Exploring the mechanism of Jingshen Xiaoke decoction in treating T2DM mice based on network pharmacology and molecular docking

被引:0
|
作者
Maoa, Yongpo [1 ,2 ,3 ]
Pana, Shengwang [1 ]
Song, Yiming [1 ]
Wang, Wenxiang [2 ,4 ,5 ]
Li, Ning [2 ,4 ,5 ]
Feng, Binbin [2 ,4 ,5 ]
Zhang, Jianhai [2 ,4 ,5 ]
机构
[1] Chengdu Univ, Sch Food & Biol Engn, Chengdu, Sichuan, Peoples R China
[2] Chongqing Three Gorges Med Coll, Chongqing 404120, Peoples R China
[3] Chongqing Presch Educ Coll, Sch Early Childhood Dev, Chongqing, Peoples R China
[4] Chongqing Key Lab Dev & Utilizat Genuine Med Mat, Chongqing, Peoples R China
[5] Chinese Med Hlth Applicat Technol Promot Ctr Chon, Chongqing, Peoples R China
关键词
Jingshen Xiaoke decoction; network pharmacology; molecular docking; type two diabetes mellitus; western blot; mechanism of action; biological activity; TYPE-2; DIABETES-MELLITUS; INSULIN-RESISTANCE; PANAX-NOTOGINSENG; PATHWAYS; SAPONINS; KINASE; RISK;
D O I
10.3233/THC-220630
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BACKGROUND: Jingshen Xiaoke decoction (JS) was prepared by studying the classic prescriptions of famous scholars in the past dynasties to prevent and treat diabetes. The related mechanism of JS against hyperlipidemia has yet to be revealed. OBJECTIVE: To investigate the mechanism of action of JS in treating diabetes mellitus by using bioinformatics methods. METHODS: A database was used to search the active ingredients and targets of the JS and targets for type 2 diabetes mellitus (T2DM). The protein interaction between the intersection targets, and the constructed the PPI network diagram was analyzed using the STRING database. Furthermore, the gene annotation tool DAVID was used to enrich the intersecting targets for the Gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway. Finally, Maestro software was used for molecular docking to verify the binding ability of the active ingredients to the core target genes. RESULTS: A total of 45 active ingredients in JS were screened out corresponding to 239 effective targets, of which 64 targets were potential targets for treating T2DM. The analysis of PPI network diagram analysis revealed that the ingredients' active components are quercetin, beta-sitosterol, stigmasterol, luteolin, and 7-Methoxy-2-methyl isoflavone. GO functional enrichment analysis indicated 186 biological processes (BP), 23 molecular functions (MF) and 13 cellular components (CC). KEGG pathway enrichment analysis revealed the enrichment of 59 signal pathways. The molecular docking results demonstrated that the active ingredients and core targets had a good docking affinity with a binding activity less than 7 kcal/mol. Finally, the western blotting illustrated that JS could up-regulate the liver PI3K/AKT-signaling pathway. CONCLUSION: JS can regulate glucolipid metabolism, reduce the inflammatory response, improve insulin resistance and modulate the immune response through PI3K/AKT signaling pathway treating of T2DM and its complications effects.
引用
收藏
页码:163 / 179
页数:17
相关论文
共 50 条
  • [31] Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking
    Zhao, Yilong
    Liu, Bohao
    Li, Yixing
    Chen, Zhe
    Zhu, Xingzhuo
    Tao, Runyi
    Wang, Zhiyu
    Wang, Hongyi
    Zhang, Yanpeng
    Yan, Shuguang
    Gong, Qiuyu
    Zhang, Guangjian
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (27) : 2161 - 2176
  • [32] Exploring the Potential Molecular Mechanism of Sijunzi Decoction in the Treatment of Non-Segmental Vitiligo Based on Network Pharmacology and Molecular Docking
    Du, Ziwei
    Wang, Hepeng
    Gao, Yang
    Zheng, Shumao
    Kou, Xiaoli
    Sun, Guoqiang
    Song, Jinxian
    Dong, Jingfei
    Wang, Genhui
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2023, 16 : 821 - 836
  • [33] Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking
    Li, Qian
    Chai, Yihui
    Li, Wen
    Guan, Liancheng
    Fan, Yizi
    Chen, Yunzhi
    MEDICINE, 2023, 102 (36) : E35109
  • [34] Network Pharmacology and Molecular Docking to Explore the Mechanism of Kangxian Decoction for Epilepsy
    Wang, Weitao
    Zhang, Yongquan
    Yang, Yibing
    Gu, Lian
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [35] Exploration of the mechanism of tetramethoxyflavone in treating osteoarthritis based on network pharmacology and molecular docking
    Chen, Ping
    Ye, Baibai
    Lin, Cheng
    Zhang, Chenning
    Chen, Jia
    Li, Linfu
    TZU CHI MEDICAL JOURNAL, 2025, 37 (01): : 99 - 108
  • [36] Exploring the Molecular Mechanism of Qing Guang An Granule in Treating Glaucoma Using Network Pharmacology and Molecular Docking
    Ou, Chen
    Song, Houpan
    Zhou, Yasha
    Peng, Jun
    Peng, Qinghua
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2020, 2020
  • [37] Exploring the mechanism of Yizhi Tongmai decoction in the treatment of vascular dementia through network pharmacology and molecular docking
    Shi, Hongshuo
    Dong, Chengda
    Wang, Min
    Liu, Ruxue
    Wang, Yao
    Kan, Zunqi
    Wang, Lei
    Si, Guomin
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (02)
  • [38] Exploring potential network pharmacology-and molecular docking-based mechanism of melittin in treating rheumatoid arthritis
    Yang, Linfu
    Zhao, Wenzheng
    Gong, Xueyang
    Yue, Dan
    Liu, Yiqiu
    Tian, Yakai
    Dong, Kun
    MEDICINE, 2023, 102 (32) : E34728
  • [39] Exploring the active ingredients and mechanisms of Liujunzi decoction in treating hepatitis B: a study based on network pharmacology, molecular docking, and molecular dynamics simulations
    Ma, Qing
    Li, Wenjun
    Wu, Wenying
    Sun, Mei
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [40] Decoding the Mechanism of Shen Qi Sha Bai Decoction in Treating Acute Myeloid Leukemia Based on Network Pharmacology and Molecular Docking
    Jia, Guanfei
    Jiang, Xiuxing
    Li, Zhiqiang
    Ding, Xin
    Lei, Ling
    Xu, Shuangnian
    Gao, Ning
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9