Optimizing diabetes classification with a machine learning-based framework

被引:5
|
作者
Feng, Xin [1 ,2 ,3 ]
Cai, Yihuai [1 ]
Xin, Ruihao [4 ,5 ,6 ]
机构
[1] Jilin Inst Chem Technol, Sch Sci, Jilin 130000, Peoples R China
[2] Jilin Univ, Coll Chem, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China
[3] Jilin Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Changchun 130012, Peoples R China
[4] Jilin Inst Chem Technol, Coll Informat & Control Engn, Jilin 130000, Peoples R China
[5] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
[6] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
关键词
Diabetes diagnoses; Machine learning; GAN;
D O I
10.1186/s12859-023-05467-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundDiabetes is a metabolic disorder usually caused by insufficient secretion of insulin from the pancreas or insensitivity of cells to insulin, resulting in long-term elevated blood sugar levels in patients. Patients usually present with frequent urination, thirst, and hunger. If left untreated, it can lead to various complications that can affect essential organs and even endanger life. Therefore, developing an intelligent diagnosis framework for diabetes is necessary.ResultThis paper proposes a machine learning-based diabetes classification framework machine learning optimized GAN. The framework encompasses several methodological approaches to address the diverse challenges encountered during the analysis. These approaches encompass the implementation of the mean and median joint filling method for handling missing values, the application of the cap method for outlier processing, and the utilization of SMOTEENN to mitigate sample imbalance. Additionally, the framework incorporates the employment of the proposed Diabetes Classification Model based on Generative Adversarial Network and employs logistic regression for detailed feature analysis. The effectiveness of the framework is evaluated using both the PIMA dataset and the diabetes dataset obtained from the GEO database. The experimental findings showcase our model achieved exceptional results, including a binary classification accuracy of 96.27%, tertiary classification accuracy of 99.31%, precision and f1 score of 0.9698, recall of 0.9698, and an AUC of 0.9702.ConclusionThe experimental results show that the framework proposed in this paper can accurately classify diabetes and provide new ideas for intelligent diagnosis of diabetes.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Machine Learning-Based Cybersecurity Framework for IoT Devices
    Arabelli, Rajeshwarrao
    Buradkar, Mrunalini
    Lakshmaji, Kotla
    Dube, Anand Prakash
    Shiba, Mary C.
    Geetha, B. T.
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [22] Analytics of machine learning-based algorithms for text classification
    Hassan, Sayar Ul
    Ahamed, Jameel
    Ahmad, Khaleel
    Sustainable Operations and Computers, 2022, 3 : 238 - 248
  • [23] Machine Learning-Based Traffic Classification of Wireless Traffic
    Song, Ronggong
    Willink, Tricia
    2019 INTERNATIONAL CONFERENCE ON MILITARY COMMUNICATIONS AND INFORMATION SYSTEMS (ICMCIS), 2019,
  • [24] An efficient parallel machine learning-based blockchain framework
    Tsai, Chun-Wei
    Chen, Yi-Ping
    Tang, Tzu-Chieh
    Luo, Yu-Chen
    ICT EXPRESS, 2021, 7 (03): : 300 - 307
  • [25] Machine Learning-Based Ransomware Classification of Bitcoin Transactions
    Alsaif, Suleiman Ali
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2023, 2023
  • [26] Machine Learning-based Classification of Online Industrial Datasets
    Faber, Rastislav
    L'ubusky, Karol
    Paulen, Radoslav
    2023 24TH INTERNATIONAL CONFERENCE ON PROCESS CONTROL, PC, 2023, : 132 - 137
  • [27] A machine learning-based framework to identify type 2 diabetes through electronic health records
    Zheng, Tao
    Xie, Wei
    Xu, Liling
    He, Xiaoying
    Zhang, Ya
    You, Mingrong
    Yang, Gong
    Chen, You
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2017, 97 : 120 - 127
  • [28] Deep Learning and Machine Learning-Based Model for Conversational Sentiment Classification
    Ullah, Sami
    Talib, Muhammad Ramzan
    Rana, Toqir A.
    Hanif, Muhammad Kashif
    Awais, Muhammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 2323 - 2339
  • [29] A Transfer Learning-Based Active Learning Framework for Brain Tumor Classification
    Hao, Ruqian
    Namdar, Khashayar
    Liu, Lin
    Khalvati, Farzad
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [30] A Learning-based Framework for Optimizing Service Migration in Mobile Edge Clouds
    Brandherm, Florian
    Wang, Lin
    Muehlhaeuser, Max
    PROCEEDINGS OF THE 2ND ACM INTERNATIONAL WORKSHOP ON EDGE SYSTEMS, ANALYTICS AND NETWORKING (EDGESYS '19), 2019, : 12 - 17