Coupling big data and life cycle assessment: A review, recommendations, and prospects

被引:8
|
作者
Li, Junjie [1 ,2 ,3 ,4 ,5 ]
Tian, Yajun [1 ,2 ,3 ]
Xie, Kechang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Extended Energy Big Data & Strategy Res Ctr, Qingdao 266101, Peoples R China
[2] Shandong Energy Inst, Qingdao 266101, Peoples R China
[3] Qingdao New Energy Shandong Lab, Qingdao 266101, Peoples R China
[4] Beijing Jiaotong Univ, Engn Res Ctr Clean & Low carbon Technol Intelligen, Sch Environm, Minist Educ, Beijing 100044, Peoples R China
[5] Beijing Jiaotong Univ, Sch Econ & Management, Beijing 100044, Peoples R China
关键词
Big life cycle analysis; Methodological framework; Multidimensional link; Spatiotemporal variation; Multi -flow and multi -node model; GREENHOUSE-GAS EMISSIONS; ENVIRONMENTAL-IMPACT ASSESSMENT; DEPENDENT CHARACTERIZATION FACTORS; LONG-TERM EMISSIONS; LAND-USE IMPACTS; LCA DATA QUALITY; SUSTAINABILITY ASSESSMENT; DYNAMIC LCA; DECISION-MAKING; GEOGRAPHICAL INFORMATION;
D O I
10.1016/j.ecolind.2023.110455
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Life cycle assessment (LCA) is a method that focuses on measuring indicators and making decisions in the environmental dimension. However, its isolation from economic, social, and other dimensions is difficult to identify the interconnections and interactions between multidimensions; its global and static perspectives fail to capture details of spatiotemporal variations effectively. These challenges limit the application of LCA for actual complex systems with multidimensional interweaving and high spatiotemporal heterogeneity. This necessitates an approach that can well quantify multidimensional links and spatiotemporal variations to close the gap. To this end, we reviewed approximately 150 papers recorded in Web of Science and Scopus databases to present the progress in the integration of LCA with different dimensions, and the development of dynamic and spatialized LCAs, as well as identify key challenges. Based on the literature review, we introduced the implications of big data (BD) for LCA to explore a theory for the coupling of BD and LCA. We specifically proposed a universal methodological framework of big life cycle analysis (BigLCA), including four practices: (1) building a spatiotemporal reference system to represent the study object, (2) developing a spatiotemporal inventory analysis scheme based on a modified multi-flow and multi-node model to calculate and integrate massive data, (3) introducing and combining a multi-layer indicator system and system dynamics model to quantify multidimensional indicators and identify their links, and (4) providing spatiotemporal contribution analysis and iterative sensitivity analysis schemes for scientific interpretation. The approach and framework can facilitate the understanding and discussions of the use of BD in LCA, which provides a new approach to improve the accuracy of indicator measurement and the effectiveness and applicability of decision-making.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A review of inventory modeling methods for missing data in life cycle assessment
    Zargar, Shiva
    Yao, Yuan
    Tu, Qingshi
    JOURNAL OF INDUSTRIAL ECOLOGY, 2022, 26 (05) : 1676 - 1689
  • [32] Regionalization of agri-food life cycle assessment: a review of studies in Portugal and recommendations for the future
    Tiago G. Morais
    Ricardo F. M. Teixeira
    Tiago Domingos
    The International Journal of Life Cycle Assessment, 2016, 21 : 875 - 884
  • [33] Regionalization of agri-food life cycle assessment: a review of studies in Portugal and recommendations for the future
    Morais, Tiago G.
    Teixeira, Ricardo F. M.
    Domingos, Tiago
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2016, 21 (06): : 875 - 884
  • [34] A systematic review of consequential life cycle assessment in whole building life cycle assessment
    Udisi, B.
    Gorgolewski, M.
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2025, 7 (02):
  • [35] Consequential life cycle assessment: a review
    J. Mason Earles
    Anthony Halog
    The International Journal of Life Cycle Assessment, 2011, 16 : 445 - 453
  • [36] Life cycle assessment of fertilizers: a review
    Skowronska, Monika
    Filipek, Tadeusz
    INTERNATIONAL AGROPHYSICS, 2014, 28 (01) : 101 - 110
  • [37] Life Cycle assessment of denim: A review
    Periyasamy, Aravin Prince
    Colourage, 2019, 66 (04):
  • [38] Exergetic Life Cycle Assessment: A Review
    Nwodo, Martin N.
    Anumba, Chimay J.
    ENERGIES, 2020, 13 (11)
  • [39] Consequential life cycle assessment: a review
    Earles, J. Mason
    Halog, Anthony
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2011, 16 (05): : 445 - 453
  • [40] Life cycle assessment of buildings: A review
    Sharma, Aashish
    Saxena, Abhishek
    Sethi, Muneesh
    Shree, Venu
    Varun
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01): : 871 - 875