A Novel Halpern-type Algorithm for a Monotone Inclusion Problem and a Fixed Points Problem on Hadamard Manifolds

被引:0
|
作者
He, Huimin [1 ]
Peng, Jigen [1 ]
Fan, Qinwei [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Xian Polytech Univ, Sch Sci, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Hadamard manifold; fixed points; iterative algorithm; monotone inclusion problem; VARIATIONAL INEQUALITY PROBLEMS; VECTOR-FIELDS; OPERATORS; APPROXIMATION; CONVERGENCE; PROJECTION;
D O I
10.1080/01630563.2023.2221896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a novel Halpern-type algorithm and prove that the sequence generated by the algorithm converges strongly to the common element of the set of fixed points of the two firmly nonexpansive mappings and the solution set of zero points of the monotone inclusion problems on Hadamard manifolds, the main results in this paper extended and improved some recent related results.
引用
收藏
页码:1031 / 1043
页数:13
相关论文
共 50 条
  • [41] Monotone inclusion problem and fixed point problem of a generalized demimetric mapping in CAT(0) spaces
    Ugwunnadi, G. C.
    Collins, O. C.
    Magagula, V. M.
    Khan, A. R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 365 - 387
  • [42] Monotone inclusion problem and fixed point problem of a generalized demimetric mapping in CAT(0) spaces
    G. C. Ugwunnadi
    O. C. Collins
    V. M. Magagula
    A. R. Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 365 - 387
  • [43] A MODIFIED PRECONDITIONING ALGORITHM FOR SOLVING MONOTONE INCLUSION PROBLEM AND APPLICATION TO IMAGE RESTORATION PROBLEM
    Altiparmak, Ebru
    Karahan, Ibrahim
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (02): : 81 - 92
  • [44] A MODIFIED PRECONDITIONING ALGORITHM FOR SOLVING MONOTONE INCLUSION PROBLEM AND APPLICATION TO IMAGE RESTORATION PROBLEM
    Altiparmak, Ebru
    Karahan, Ibrahim
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (02): : 81 - 92
  • [45] Strong convergence to a solution of the inclusion problem for a finite family of monotone operators in Hadamard spaces
    Ranjbar, Sajad
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 231 - 248
  • [46] A STRONG CONVERGENCE HALPERN-TYPE INERTIAL ALGORITHM FOR SOLVING SYSTEM OF SPLIT VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Oyewole, O. K.
    Aremu, K. O.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2762 - 2791
  • [47] TWO-STEP INERTIAL HALPERN-TYPE FORWARD-BACKWARD SPLITTING ALGORITHM FOR MONOTONE INCLUSIONS PROBLEMS IN HILBERT SPACES
    Rao, Y.
    Wang, T.
    Lv, P.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (02) : 419 - 428
  • [48] On common solution of a monotone variational inclusion for two mappings and a fixed point problem
    Ogbuisi, Ferdinard Udochukwu
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2019, 81 (01): : 111 - 122
  • [49] ON COMMON SOLUTION OF A MONOTONE VARIATIONAL INCLUSION FOR TWO MAPPINGS AND A FIXED POINT PROBLEM
    Ogbuisi, Ferdinard Udochukwu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (01): : 111 - 122
  • [50] Self-adaptive Technique with Double Inertial Steps for Inclusion Problem on Hadamard Manifolds
    Abass, Hammed Anuoluwapo
    Oyewole, Olawale Kazeem
    Aremu, Kazeem Olalekan
    Jolaoso, Lateef Olakunle
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,