siVAE: interpretable deep generative models for single-cell transcriptomes

被引:16
|
作者
Choi, Yongin [1 ,2 ]
Li, Ruoxin [2 ,3 ]
Quon, Gerald [1 ,2 ,4 ]
机构
[1] Univ Calif Davis, Grad Grp Biomed Engn, Davis, CA 95616 USA
[2] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
[3] Univ Calif Davis, Grad Grp Biostat, Davis, CA USA
[4] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
GENE REGULATORY NETWORKS; RNA-SEQ; ANALYSIS REVEALS; DIFFERENTIATION; COEXPRESSION; IDENTIFICATION; INFERENCE;
D O I
10.1186/s13059-023-02850-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] PeakVI: A deep generative model for single-cell chromatin accessibility analysis
    Ashuach, Tal
    Reidenbach, Daniel A.
    Gayoso, Adam
    Yosef, Nir
    CELL REPORTS METHODS, 2022, 2 (03):
  • [42] Simultaneous deep generative modelling and clustering of single-cell genomic data
    Liu, Qiao
    Chen, Shengquan
    Jiang, Rui
    Wong, Wing Hung
    NATURE MACHINE INTELLIGENCE, 2021, 3 (06) : 536 - +
  • [43] Discovering Interpretable Representations for Both Deep Generative and Discriminative Models
    Adel, Tameem
    Ghahramani, Zoubin
    Weller, Adrian
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [44] Deep-learning methods for unveiling large-scale single-cell transcriptomes
    Xilin Shen
    Xiangchun Li
    Cancer Biology & Medicine, 2023, 20 (12) : 972 - 980
  • [45] Deep-learning methods for unveiling large-scale single-cell transcriptomes
    Shen, Xilin
    Li, Xiangchun
    CANCER BIOLOGY & MEDICINE, 2023, 20 (12) : 972 - 980
  • [46] Airpart: interpretable statistical models for analyzing allelic imbalance in single-cell datasets
    Mu, Wancen
    Sarkar, Hirak
    Srivastava, Avi
    Choi, Kwangbom
    Patro, Rob
    Love, Michael, I
    BIOINFORMATICS, 2022, 38 (10) : 2773 - 2780
  • [47] Significance of single-cell and spatial transcriptomes in cell biology and toxicology
    Duojiao Wu
    Xiaozhuan Liu
    Jiaqiang Zhang
    Li Li
    Xiangdong Wang
    Cell Biology and Toxicology, 2021, 37 : 1 - 5
  • [48] Significance of single-cell and spatial transcriptomes in cell biology and toxicology
    Wu, Duojiao
    Liu, Xiaozhuan
    Zhang, Jiaqiang
    Li, Li
    Wang, Xiangdong
    CELL BIOLOGY AND TOXICOLOGY, 2021, 37 (01) : 1 - 5
  • [49] Cell type identification from single-cell transcriptomes in melanoma
    Huo, Qiuyan
    Yin, Yu
    Liu, Fangfang
    Ma, Yuying
    Wang, Liming
    Qin, Guimin
    BMC MEDICAL GENOMICS, 2021, 14 (SUPPL 5)
  • [50] Cell type identification from single-cell transcriptomes in melanoma
    Qiuyan Huo
    Yu Yin
    Fangfang Liu
    Yuying Ma
    Liming Wang
    Guimin Qin
    BMC Medical Genomics, 14