Distributed estimation for large-scale expectile regression

被引:0
|
作者
Pan, Yingli [1 ]
Wang, Haoyu [1 ]
Zhao, Xiaoluo [1 ]
Xu, Kaidong [1 ]
Liu, Zhan [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributed algorithm; Expectile regression; GEL function; Large-scale data;
D O I
10.1080/03610918.2023.2245181
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Analysis of large volume of data is very complex due to not only the high level of skewness and heteroscedasticity of variance but also the difficulty of data storage. Expectile regression is a common alternative method to analyze heterogeneous data. Distributed storage can reduce effectively the storage burden of a single machine. In this paper, we consider fitting linear expectile regression model to estimate conditional expectile based on large-scale data. We store the data in a distributed manner and construct a gradient-enhanced loss (GEL) function as a proxy for the global loss function. A distributed algorithm is proposed for the optimization of the GEL function. The asymptotic properties of the proposed estimator are established. Simulation studies are conducted to assess the finite-sample performance of our proposed estimator. Applications to an analysis of the National Health Interview Survey data set demonstrate the practicability of the proposed method.
引用
收藏
页码:104 / 119
页数:16
相关论文
共 50 条
  • [41] Distributed joint parameter and state estimation algorithm for large-scale interconnected systems
    Hamdi, Mounira
    Kamoun, Samira
    Idoumghar, Lhassane
    Chaoui, Mondher
    Kachouri, Abdenaceur
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, 38 (04) : 1403 - 1419
  • [42] Large-Scale and Distributed Optimization Preface
    Giselsson, Pontus
    Rantzer, Anders
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : V - V
  • [43] Large-Scale and Distributed Optimization: An Introduction
    Giselsson, Pontus
    Rantzer, Anders
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 1 - 10
  • [44] Large-scale distributed language modeling
    Emami, Ahmad
    Papineni, Kishore
    Sorensen, Jeffrey
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3, 2007, : 37 - +
  • [45] Efficient estimation in expectile regression using envelope models
    Chen, Tuo
    Su, Zhihua
    Yang, Yi
    Ding, Shanshan
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 143 - 173
  • [46] Nonparametric estimation of expectile regression in functional dependent data
    Almanjahie, Ibrahim M.
    Bouzebda, Salim
    Kaid, Zoulikha
    Laksaci, Ali
    JOURNAL OF NONPARAMETRIC STATISTICS, 2022, 34 (01) : 250 - 281
  • [47] Estimation and inference for multikink expectile regression with longitudinal data
    Li, Dongyu
    Wang, Lei
    Zhao, Weihua
    STATISTICS IN MEDICINE, 2022, 41 (07) : 1296 - 1313
  • [48] Robust regression for large-scale neuroimaging studies
    Fritsch, Virgile
    Da Mota, Benoit
    Loth, Eva
    Varoquauxa, Gael
    Banaschewski, Tobias
    Barker, Gareth J.
    Bokde, Arun L. W.
    Bruehl, Ruediger
    Butzek, Brigitte
    Conrod, Patricia
    Flor, Herta
    Garavan, Hugh
    Lemaitre, Herve
    Mann, Karl
    Nees, Frauke
    Paus, Tomas
    Schad, Daniel J.
    Schuemann, Gunter
    Frouin, Vincent
    Poline, Jean-Baptiste
    Thirion, Bertrand
    NEUROIMAGE, 2015, 111 : 431 - 441
  • [49] Transfer Learning with Large-Scale Quantile Regression
    Jin, Jun
    Yan, Jun
    Aseltine, Robert H.
    Chen, Kun
    TECHNOMETRICS, 2024, 66 (03) : 381 - 393
  • [50] Smoothed quantile regression with large-scale inference
    He, Xuming
    Pan, Xiaoou
    Tan, Kean Ming
    Zhou, Wen-Xin
    JOURNAL OF ECONOMETRICS, 2023, 232 (02) : 367 - 388