A High-Quality Genome-Scale Model for Rhodococcus opacus Metabolism

被引:6
|
作者
Roell, Garrett W. [1 ]
Schenk, Christina [2 ,3 ]
Anthony, Winston E. [4 ,5 ]
Carr, Rhiannon R. [1 ]
Ponukumati, Aditya [1 ]
Kim, Joonhoon [6 ]
Akhmatskaya, Elena [2 ,3 ,8 ]
Foston, Marcus [1 ]
Dantas, Gautam [4 ,5 ,9 ,10 ,11 ]
Moon, Tae Seok [1 ]
Tang, Yinjie J. [1 ]
Martin, Hector Garcia [2 ,3 ,6 ,7 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[3] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[4] Washington Univ St Louis, Edison Family Ctr Genome Sci & Syst Biol, Sch Med, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63108 USA
[6] DOE Agile BioFoundry, Emeryville, CA 94608 USA
[7] DOE Joint BioEnergy Inst, Emeryville, CA 94608 USA
[8] Basque Fdn Sci, IKERBASQUE, Bilbao 48009, Spain
[9] Washington Univ, Sch Med, Dept Mol Microbiol, St Louis, MO 63108 USA
[10] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
[11] Washington Univ, Dept Pediat, Sch Med St Louis, St Louis, MO 63110 USA
来源
ACS SYNTHETIC BIOLOGY | 2023年 / 12卷 / 06期
关键词
ATP maintenance; genome-scale models; omicsdata; C-13-metabolic flux analysis; predictivebiology; RECONSTRUCTION; STRATEGY; NETWORK; FLUXES; OMICS;
D O I
10.1021/acssynbio.2c00618
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Rhodococcus opacus is a bacterium thathas a hightolerance to aromatic compounds and can produce significant amountsof triacylglycerol (TAG). Here, we present iGR1773, the first genome-scalemodel (GSM) of R. opacus PD630 metabolism based onits genomic sequence and associated data. The model includes 1773genes, 3025 reactions, and 1956 metabolites, was developed in a reproduciblemanner using CarveMe, and was evaluated through Metabolic Model tests(MEMOTE). We combine the model with two Constraint-Based Reconstructionand Analysis (COBRA) methods that use transcriptomics data to predictgrowth rates and fluxes: E-Flux2 and SPOT (Simplified Pearson Correlationwith Transcriptomic data). Growth rates are best predicted by E-Flux2.Flux profiles are more accurately predicted by E-Flux2 than flux balanceanalysis (FBA) and parsimonious FBA (pFBA), when compared to 44 centralcarbon fluxes measured by C-13-Metabolic Flux Analysis (C-13-MFA). Under glucose-fed conditions, E-Flux2 presents an R (2) value of 0.54, while predictions based onpFBA had an inferior R (2) of 0.28. We attributethis improved performance to the extra activity information providedby the transcriptomics data. For phenol-fed metabolism, in which thesubstrate first enters the TCA cycle, E-Flux2's flux predictionsdisplay a high R (2) of 0.96 while pFBA showedan R (2) of 0.93. We also show that glucosemetabolism and phenol metabolism function with similar relative ATPmaintenance costs. These findings demonstrate that iGR1773 can helpthe metabolic engineering community predict aromatic substrate utilizationpatterns and perform computational strain design.
引用
收藏
页码:1632 / 1644
页数:13
相关论文
共 50 条
  • [31] Genome-scale Modeling of Metabolism and Macromolecular Expression and Their Applications
    Sanjeev Dahal
    Jiao Zhao
    Laurence Yang
    Biotechnology and Bioprocess Engineering, 2020, 25 : 931 - 943
  • [32] A Genome-Scale Database and Reconstruction of Caenorhabditis elegans Metabolism
    Gebauer, Juliane
    Gentsch, Christoph
    Mansfeld, Johannes
    Schmeisser, Kathrin
    Waschina, Silvio
    Brandes, Susanne
    Klimmasch, Lukas
    Zamboni, Nicola
    Zarse, Kim
    Schuster, Stefan
    Ristow, Michael
    Schaeuble, Sascha
    Kaleta, Christoph
    CELL SYSTEMS, 2016, 2 (05) : 312 - 322
  • [33] Genome-scale thermodynamic analysis of Escherichia coli metabolism
    Henry, CS
    Jankowski, MD
    Broadbelt, LJ
    Hatzimanikatis, V
    BIOPHYSICAL JOURNAL, 2006, 90 (04) : 1453 - 1461
  • [34] Determining the Control Circuitry of Redox Metabolism at the Genome-Scale
    Federowicz, Stephen
    Kim, Donghyuk
    Ebrahim, Ali
    Lerman, Joshua
    Nagarajan, Harish
    Cho, Byung-kwan
    Zengler, Karsten
    Palsson, Bernhard
    PLOS GENETICS, 2014, 10 (04):
  • [35] Analysis of omics data with genome-scale models of metabolism
    Hyduke, Daniel R.
    Lewis, Nathan E.
    Palsson, Bernhard O.
    MOLECULAR BIOSYSTEMS, 2013, 9 (02) : 167 - 174
  • [36] Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model
    Islam, M. Ahsanul
    Zengler, Karsten
    Edwards, Elizabeth A.
    Mahadevan, Radhakrishnan
    Stephanopoulos, Gregory
    INTEGRATIVE BIOLOGY, 2015, 7 (08) : 869 - 882
  • [37] Model-centric data integration and the development of genome-scale models of metabolism.
    Schilling, CH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U479 - U479
  • [38] Predicting changes in renal metabolism after compound exposure with a genome-scale metabolic model
    Rawls, Kristopher D.
    Dougherty, Bonnie, V
    Vinnakota, Kalyan C.
    Pannala, Venkat R.
    Wallqvist, Anders
    Kolling, Glynis L.
    Papin, Jason A.
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2021, 412
  • [39] A genome-scale metabolic model of parasitic whipworm
    Bay, Omer F.
    Hayes, Kelly S.
    Schwartz, Jean-Marc
    Grencis, Richard K.
    Roberts, Ian S.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [40] A genome-scale metabolic model of parasitic whipworm
    Ömer F. Bay
    Kelly S. Hayes
    Jean-Marc Schwartz
    Richard K. Grencis
    Ian S. Roberts
    Nature Communications, 14