Transfer Learning for Early Prediction of Adverse Drug Reactions: Docetaxel and Alopecia in Breast Cancer as a Case Study

被引:1
|
作者
Dimitsaki, Stella [1 ,2 ]
Natsiavas, Pantelis [2 ]
Jaulent, Marie-Christine [1 ]
机构
[1] Univ Paris 13, Sorbonne Univ, INSERM, LIMICS, F-75006 Paris, France
[2] Ctr Res & Dev Hellas, Inst Appl Biosci, Thessaloniki, Greece
关键词
Breast cancer; docetaxel; adverse drug reaction; alopecia; transfer learning;
D O I
10.3233/SHTI230158
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Transfer Learning (TL) is an approach which has not yet been widely investigated in healthcare, mostly applied in image data. This study outlines a TL pipeline leveraging Individual Case Safety reports (ICSRs) and Electronic Health Records (EHR), applied for the early detection Adverse Drug Reactions (ADR), evaluated using of alopecia and docetaxel on breast cancer patients as use case.
引用
收藏
页码:396 / 397
页数:2
相关论文
共 50 条
  • [31] Novel Strategy in the Detection of Adverse Cutaneous Drug Reactions: A Case Series Study
    Ban, Erika-Gyoengyi
    Lechsner, Patrick
    Dho-Nagy, Eszter-Anna
    Balan, Maria-Antonia
    Major-Szakacs, Istvan
    Brassai, Attila
    Simon-Szabo, Zsuzsanna
    Ureche, Corina
    DIAGNOSTICS, 2024, 14 (06)
  • [32] Multi-label transfer learning for the early diagnosis of breast cancer
    Chougrad, Hiba
    Zouaki, Hamid
    Alheyane, Omar
    NEUROCOMPUTING, 2020, 392 : 168 - 180
  • [33] Drug Utilisation Pattern and Adverse Drug Reactions in Stage II Breast Cancer Patients in a Tertiary Care Centre of Odisha- An Observational Study
    Rout, Anima
    Das, Priti
    Tripathy, Ratikanta
    Agarwalla, Dillip Kumar
    Mishra, Vedvyas
    JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2021, 15 (08) : XC1 - XC5
  • [34] Transfer learning for the generalization of artificial intelligence in breast cancer detection: a case-control study
    Africano, Gerson
    Arponen, Otso
    Rinta-Kiikka, Irina
    Pertuz, Said
    ACTA RADIOLOGICA, 2024, 65 (04) : 334 - 340
  • [35] Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models
    Munoz, Emir
    Novacek, Vit
    Vandenbussche, Pierre-Yves
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (01) : 190 - 202
  • [36] Pharmacokinetics and safety of cyclophosphamide and docetaxel in a hemodialysis patient with early stage breast cancer: a case report
    Yang, Liu
    Zhang, Xiao-chen
    Yu, Su-feng
    Zhu, Hua-Qing
    Hu, Ai-ping
    Chen, Jian
    Shen, Peng
    BMC CANCER, 2015, 15
  • [37] Pharmacokinetics and safety of cyclophosphamide and docetaxel in a hemodialysis patient with early stage breast cancer: a case report
    Liu Yang
    Xiao-chen Zhang
    Su-feng Yu
    Hua-Qing Zhu
    Ai-ping Hu
    Jian Chen
    Peng Shen
    BMC Cancer, 15
  • [38] Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs
    Comes, Maria Colomba
    La Forgia, Daniele
    Didonna, Vittorio
    Fanizzi, Annarita
    Giotta, Francesco
    Latorre, Agnese
    Martinelli, Eugenio
    Mencattini, Arianna
    Paradiso, Angelo Virgilio
    Tamborra, Pasquale
    Terenzio, Antonella
    Zito, Alfredo
    Lorusso, Vito
    Massafra, Raffaella
    CANCERS, 2021, 13 (10)
  • [39] Transfer Learning from Breast Cancer Detection Models for Image-Based Breast Cancer Risk Prediction
    Wagner, T.
    Klanecek, Z.
    Wang, Y. K.
    Cockmartin, L.
    Marshall, N.
    Studen, A.
    Jeraj, R.
    Bosmans, H.
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [40] Oxidative DNA Damage in Radiation Therapy Related Early Adverse Skin Reactions in Breast Cancer
    Hu, J.
    Nelson, O.
    Takita, C.
    Case, D.
    Wright, J. L.
    Lee, E.
    Baez-Diaz, L.
    Brown, D. R.
    Strasser, J.
    Enevold, G.
    Baglan, K.
    Bryant, D.
    Lad, T.
    Lee, L.
    Rine, G. P.
    Curtis, A. E.
    Koprowski, C. D.
    Tomlinson, W. V.
    Lesser, G. J.
    Shaw, E. G.
    Urbanic, J. J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : S108 - S108