RGB-D Salient Object Detection Using Saliency and Edge Reverse Attention

被引:3
|
作者
Ikeda, Tomoki [1 ]
Ikehara, Masaaki [1 ]
机构
[1] Keio Univ, Dept Elect & Elect Engn, Yokohama 2238522, Japan
关键词
Image edge detection; Feature extraction; Object detection; Task analysis; Indexes; Saliency detection; Image resolution; Deep learning; RGB-D salient object detection; reverse attention;
D O I
10.1109/ACCESS.2023.3292880
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RGB-D salient object detection is a task to detect visually significant objects in an image using RGB and depth images. Although many useful CNN-based methods have been proposed in the past, there are some problems such as blurring of object boundaries and inability to detect important parts of objects, leading to a decrease in detection accuracy. In this paper, we propose RGB-D salient object detection using Saliency and Edge Reverse Attention(SERA), which combines the fusion of saliency and edge features with reverse attention. The reverse attention process has the effect of making it easier to capture the boundaries of objects and undetected objects by inverting the up-sampled saliency features and weighting other saliency features, and the edge reverse attention process has the effect of making salient object regions stand out by inverting the edge features and weighting saliency features. The interaction between the salient object features and the edge features enhances each other's features and refines the information on the boundary of objects and salient object regions. In addition, to make it easier to refer to the global information of an image, we introduced the Multi-Scale Interactive Module(MSIM), which is capable of acquiring information at rich scales by converting feature maps to different resolutions and interacting with them. In addition to the salient object output, supervised learning is applied to multiple edge outputs of each resolution to improve the accuracy of both salient objects and boundary areas. Experimental results on five benchmarks show that the proposed method quantitatively performs better than the conventional method, and qualitatively improves the sharpness of object boundaries and the accuracy of detecting important parts of objects.
引用
收藏
页码:68818 / 68825
页数:8
相关论文
共 50 条
  • [1] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [2] SALIENT OBJECT DETECTION FOR RGB-D IMAGE VIA SALIENCY EVOLUTION
    Guo, Jingfan
    Ren, Tongwei
    Bei, Jia
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [3] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [4] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [5] Improving RGB-D salient object detection by addressing inconsistent saliency problems
    Zuo, Kun
    Xiao, Hanguang
    Zhang, Hongmin
    Chen, Diya
    Liu, Tianqi
    Li, Yulin
    Wen, Hao
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [6] Hybrid-Attention Network for RGB-D Salient Object Detection
    Chen, Yuzhen
    Zhou, Wujie
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [7] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [8] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [9] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [10] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6660 - 6675