Relativistic quantum communication between harmonic oscillator detectors

被引:11
|
作者
Lapponi, Alessio [1 ,2 ]
Moustos, Dimitris [3 ]
Bruschi, David Edward [4 ]
Mancini, Stefano [5 ,6 ]
机构
[1] Scuola Super Meridionale SSM, Largo San Marcellino, I-80138 Naples, Italy
[2] Ist Nazl Fis Nucl INFN, Sez Napoli, I-80126 Naples, Italy
[3] Univ Patras, Dept Phys, Patras 26504, Greece
[4] Forschungszentrum, Inst Quantum Comp Analyt PGI 12, D-52425 Julich, Germany
[5] Univ Camerino, Sch Sci & Technol, Via Madonna Carceri, I-62032 Camerino, Italy
[6] Ist Nazl Fis Nucl INFN, Sez Perugia, I-06123 Perugia, Italy
关键词
CLASSICAL INFORMATION CAPACITY; BROWNIAN-MOTION; CHANNELS; CLICK;
D O I
10.1103/PhysRevD.107.125010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a model of communication employing two harmonic oscillator detectors interacting through a scalar field in a background Minkowski spacetime. In this way, the scalar field plays the role of a quantum channel, namely a bosonic Gaussian channel. The classical and quantum capacities of the communication channel are found, assuming that the detectors' spatial dimensions are negligible compared to their distance. In particular, we study the evolution in time of the classical capacity after the detectors-field interaction is switched on for various detectors' frequencies and coupling strengths with the field. As a result, we find a finite value of these parameters optimizing the communication of classical messages. Instead, a reliable communication of quantum messages turns out to be always inhibited.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] RELATIVISTIC HARMONIC OSCILLATOR AND NUCLEAR REACTIONS
    COCHO, G
    FLORES, J
    MONDRAGON, A
    NUCLEAR PHYSICS A, 1969, A128 (01) : 110 - +
  • [22] RELATIVISTIC HARMONIC OSCILLATOR AND SUPERCONVERGENT AMPLITUDES
    COCHO, G
    FRONSDAL, C
    GRODSKY, IT
    WHITE, R
    PHYSICAL REVIEW, 1967, 162 (05): : 1662 - &
  • [23] Geometric models of the relativistic harmonic oscillator
    Cotaescu, II
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (20): : 3545 - 3550
  • [24] YUKAWA APPROACH AND DIRAC APPROACH TO RELATIVISTIC QUANTUM-MECHANICS - RELATIVISTIC HARMONIC-OSCILLATOR MODEL
    HAN, D
    KIM, YS
    PROGRESS OF THEORETICAL PHYSICS, 1980, 64 (05): : 1852 - 1860
  • [25] Geometric Models of the Relativistic Harmonic Oscillator
    Cotaescu, I. I.
    International Journal of Modern Physics A, 12 (20):
  • [26] Relativistic chaos in the anisotropic harmonic oscillator
    Vieira, Ronaldo S. S.
    Michtchenko, Tatiana A.
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 276 - 282
  • [27] Experimental realization of a relativistic harmonic oscillator
    Fujiwara, Kurt M.
    Geiger, Zachary A.
    Singh, Kevin
    Senaratne, Ruwan
    Rajagopal, Shankari V.
    Lipatov, Mikhail
    Shimasaki, Toshihiko
    Weld, David M.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [28] Pseudospin symmetry and the relativistic harmonic oscillator
    Lisboa, R
    Malheiro, M
    de Castro, AS
    Alberto, P
    Fiolhais, M
    PHYSICAL REVIEW C, 2004, 69 (02): : 15
  • [29] QUANTUM RELATIVISTIC OSCILLATOR .3. CONTRACTION BETWEEN THE ALGEBRAS OF SO(3,2) AND THE 3-DIMENSIONAL HARMONIC-OSCILLATOR
    BOHM, A
    LOEWE, M
    MAGNOLLAY, P
    TARLINI, M
    ALDINGER, RR
    BIEDENHARN, LC
    VANDAM, H
    PHYSICAL REVIEW D, 1985, 32 (10): : 2828 - 2834
  • [30] THE QUANTUM RELATIVISTIC HARMONIC-OSCILLATOR - SPECTRUM OF ZEROS OF ITS WAVE-FUNCTIONS
    ZARZO, A
    MARTINEZ, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 2926 - 2935