Twistronics in two-dimensional transition metal dichalcogenide (TMD)-based van der Waals interface

被引:8
|
作者
Gupta, Neelam [1 ]
Sachin, Saurav [1 ]
Kumari, Puja [1 ]
Rani, Shivani [1 ]
Ray, Soumya Jyoti [1 ]
机构
[1] Indian Inst Technol Patna, Dept Phys, Bihta 801103, India
关键词
OPTICAL-PROPERTIES; HETEROSTRUCTURES; MOS2; PHOTOLUMINESCENCE; MAGNETORESISTANCE; GROWTH;
D O I
10.1039/d3ra06559f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal dichalcogenides (TMD) based heterostructures have gained significant attention lately because of their distinct physical properties and potential uses in electronics and optoelectronics. In the present work, the effects of twist on the structural, electronic, and optical properties (such as the static dielectric constant, refractive index, extinction coefficient, and absorption coefficient) of vertically stacked TMD heterostructures, namely MoSe2/WSe2, WS2/WSe2, MoSe2/WS2 and MoS2/WSe2, have been systematically studied and a thorough comparison is done among these heterostructures. In addition, the absence of negative frequency in the phonon dispersion curve and a low formation energy confirm the structural and thermodynamical stability of all the proposed TMD heterostructures. The calculations are performed using first-principles-based density functional theory (DFT) method. Beautiful Moire patterns are formed due to the relative rotation of the layers as a consequence of the superposition of the periodic structures of the TMDs on each other. Twist engineering allows the modulation of bandgaps and a phase change from direct to indirect band gap semiconductors as well. The high optical absorption in the visible range of spectrum makes these twisted heterostructures very promising candidates in photovoltaic applications. The effects of twist on the structural, electronic and optical properties of some vertically stacked transition metal dichalcogenide heterostructures (namely MoSe2/WSe2, WS2/WSe2, MoSe2/WS2 and MoS2/WSe2) have been systematically explored.
引用
收藏
页码:2878 / 2888
页数:11
相关论文
共 50 条
  • [21] Hybrid van der Waals heterojunction based on two-dimensional materials
    Sun, Cuicui
    Qi, Meili
    Journal of Physics: Conference Series, 2021, 2109 (01)
  • [22] Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
    Lee, Jae Yoon
    Shin, Jun-Hwan
    Lee, Gwan-Hyoung
    Lee, Chul-Ho
    NANOMATERIALS, 2016, 6 (11)
  • [23] Photodetectors Based on Two-Dimensional Materials and Their van der Waals Heterostructures
    Li Jiayi
    Ding Yi
    Zhang, David Wei
    Zhou Peng
    ACTA PHYSICO-CHIMICA SINICA, 2019, 35 (10) : 1058 - 1077
  • [24] Towards two-dimensional van der Waals ferroelectrics
    Wang, Chuanshou
    You, Lu
    Cobden, David
    Wang, Junling
    NATURE MATERIALS, 2023, 22 (05) : 542 - 552
  • [25] Excitons in two-dimensional van der Waals heterostructures
    Liu, Hao
    Zong, Yixin
    Wang, Pan
    Wen, Hongyu
    Wu, Haibin
    Xia, Jianbai
    Wei, Zhongming
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (05)
  • [26] Towards two-dimensional van der Waals ferroelectrics
    Chuanshou Wang
    Lu You
    David Cobden
    Junling Wang
    Nature Materials, 2023, 22 : 542 - 552
  • [27] Magnetism in two-dimensional van der Waals materials
    Burch, Kenneth S.
    Mandrus, David
    Park, Je-Geun
    NATURE, 2018, 563 (7729) : 47 - 52
  • [28] Magnetism in two-dimensional van der Waals materials
    Kenneth S. Burch
    David Mandrus
    Je-Geun Park
    Nature, 2018, 563 : 47 - 52
  • [29] The rise of two-dimensional van der Waals ferroelectrics
    Wu, Menghao
    Jena, Puru
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2018, 8 (05)
  • [30] Engineering Magnetic Phases in Two-Dimensional Non-van der Waals Transition-Metal Oxides
    Bandyopadhyay, Arkamita
    Frey, Nathan C.
    Jariwala, Deep
    Shenoy, Vivek B.
    NANO LETTERS, 2019, 19 (11) : 7793 - 7800