Exchange-Biased Quantum Anomalous Hall Effect

被引:3
|
作者
Zhang, Peng [1 ]
Balakrishnan, Purnima P. [2 ]
Eckberg, Christopher [1 ,3 ,4 ,5 ]
Deng, Peng [1 ]
Nozaki, Tomohiro [6 ]
Chong, Su Kong [1 ]
Quarterman, Patrick [2 ]
Holtz, Megan E. [7 ]
Maranville, Brian B. [2 ]
Qiu, Gang [1 ]
Pan, Lei [1 ]
Emmanouilidou, Eve [8 ]
Ni, Ni [8 ]
Sahashi, Masashi [6 ]
Grutter, Alexander [2 ]
Wang, Kang L. [1 ,8 ,9 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA
[3] Fibertek Inc, Herndon, VA 20171 USA
[4] US Army Res Lab, Adelphi, MD 20783 USA
[5] US Army Res Lab, Playa Vista, CA 90094 USA
[6] Tohoku Univ, Dept Elect Engn, Sendai 9808579, Japan
[7] Natl Inst Stand & Technol NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[8] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[9] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
关键词
antiferromagnet; exchange bias; quantum anomalous Hall; topological insulators; TOPOLOGICAL INSULATOR; MAGNETIC ORDER; HETEROSTRUCTURE; STATE;
D O I
10.1002/adma.202300391
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr-doped (Bi,Sb)(2)Te-3 (CBST) grown on an uncompensated antiferromagnetic insulator Al-doped Cr2O3. Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al-Cr2O3 surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange-biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al-Cr2O3 layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH-based spintronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Observing the quantum anomalous Hall effect
    Ling Wang
    NationalScienceReview, 2014, 1 (01) : 60 - 61
  • [32] Anomalous quantum Hall effect on sphere
    Jellal, Ahmed
    NUCLEAR PHYSICS B, 2008, 804 (03) : 361 - 382
  • [33] The quantum anomalous Hall effect reloaded
    Giulia Pacchioni
    Nature Reviews Materials, 2021, 6 : 968 - 968
  • [34] Quantum anomalous Hall effect for metrology
    Huang, Nathaniel J.
    Boland, Jessica L.
    Fijalkowski, Kajetan M.
    Gould, Charles
    Hesjedal, Thorsten
    Kazakova, Olga
    Kumar, Susmit
    Scherer, Hansjoerg
    APPLIED PHYSICS LETTERS, 2025, 126 (04)
  • [35] Quantum anomalous layer Hall effect
    Anirban, Ankita
    NATURE REVIEWS PHYSICS, 2023, 5 (05) : 271 - 271
  • [36] Colloquium: Quantum anomalous Hall effect
    Chang, Cui-Zu
    Liu, Chao -Xing
    MacDonald, Allan H.
    REVIEWS OF MODERN PHYSICS, 2023, 95 (01)
  • [37] Photonic Anomalous Quantum Hall Effect
    Mittal, Sunil
    Orre, Venkata Vikram
    Leykam, Daniel
    Chong, Y. D.
    Hafezi, Mohammad
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)
  • [38] The fractional quantum anomalous Hall effect
    Ju, Long
    MacDonald, Allan H.
    Mak, Kin Fai
    Shan, Jie
    Xu, Xiaodong
    NATURE REVIEWS MATERIALS, 2024, 9 (07): : 455 - 459
  • [39] Quantum anomalous layer Hall effect
    Ankita Anirban
    Nature Reviews Physics, 2023, 5 : 271 - 271
  • [40] Anomalous bilayer quantum Hall effect
    Sethi G.
    Sheng D.N.
    Liu F.
    Physical Review B, 2023, 108 (16)