Design and performance of GaSb-based quantum cascade detectors

被引:4
|
作者
Giparakis, Miriam [1 ]
Windischhofer, Andreas [1 ]
Isceri, Stefania [1 ]
Schrenk, Werner [2 ]
Schwarz, Benedikt [1 ]
Strasser, Gottfried [1 ,2 ]
Andrews, Aaron Maxwell [1 ]
机构
[1] TU Wien, Inst Solid State Elect, Gusshausstr 25, A-1040 Vienna, Austria
[2] TU Wien, Ctr Micro & Nanostruct, Gusshausstr 25, A-1040 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
quantum cascade detector; mid-infrared detection; molecular beam epitaxy; III-V semiconductors; InAs/AlSb on GaSb; WELLS;
D O I
10.1515/nanoph-2023-0702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
InAs/AlSb quantum cascade detectors (QCDs) grown strain-balanced on GaSb substrates are presented. This material system offers intrinsic performance-improving properties, like a low effective electron mass of the well material of 0.026 m(0), enhancing the optical transition strength, and a high conduction band offset of 2.28 eV, reducing the noise and allowing for high optical transition energies. InAs and AlSb strain balance each other on GaSb with an InAs:AlSb ratio of 0.96:1. To regain the freedom of a lattice-matched material system regarding the optimization of a QCD design, submonolayer InSb layers are introduced. With strain engineering, four different active regions between 3.65 and 5.5 mu m were designed with InAs:AlSb thickness ratios of up to 2.8:1, and subsequently grown and characterized. This includes an optimized QCD design at 4.3 mu m, with a room-temperature peak responsivity of 26.12 mA/W and a detectivity of 1.41 x 10(8) Jones. Additionally, all QCD designs exhibit higher-energy interband signals in the mid- to near-infrared, stemming from the InAs/AlSb type-II alignment and the narrow InAs band gap.
引用
收藏
页码:1773 / 1780
页数:8
相关论文
共 50 条
  • [31] Terahertz waveguide design for GaSb/AlGaSb quantum cascade laser
    Yasuda, Hiroaki
    Hosako, Iwao
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (03) : 1575 - 1578
  • [32] Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors
    Nolde, J. A.
    Jackson, E. M.
    Bennett, M. F.
    Affouda, C. A.
    Cleveland, E. R.
    Canedy, C. L.
    Vurgaftman, I.
    Jernigan, G. G.
    Meyer, J. R.
    Aifer, E. H.
    APPLIED PHYSICS LETTERS, 2017, 111 (05)
  • [33] Terahertz waveguide design for GaSb/AlGaSb quantum cascade laser
    National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-0015, Japan
    Jpn. J. Appl. Phys., 3 PART 1 (1575-1578):
  • [34] Morphology of GaSb-based island films
    A. R. Kushkhov
    O. I. Rabinovich
    D. S. Gaev
    Inorganic Materials, 2012, 48 : 10 - 15
  • [35] On-chip unstable resonator cavity GaSb-based quantum well lasers
    1600, American Institute of Physics Inc. (121):
  • [36] On-chip unstable resonator cavity GaSb-based quantum well lasers
    Yang, C.
    Paxton, A. H.
    Newell, T. C.
    Lu, C. A.
    Kaspi, R.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (14)
  • [37] GaSb-Based lasers for gas monitoring
    Alibert, C
    Vicet, A
    Rouillard, Y
    Gaillard, S
    Ouvrard, A
    Perona, A
    Yarekha, D
    Comallonga, J
    Baranov, AN
    2002 IEEE/LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2002, : 550 - 551
  • [38] Structural and optical studies of nitrogen incorporation into GaSb-based GaInSb quantum wells
    Nair, Hari P.
    Crook, Adam M.
    Yu, Kin M.
    Bank, Seth R.
    APPLIED PHYSICS LETTERS, 2012, 100 (02)
  • [39] Passively Mode-Locked 2.7 and 3.2 μm GaSb-Based Cascade Diode Lasers
    Feng, Tao
    Shterengase, Leon
    Hosoda, Takashi
    Kipshidze, Gela
    Belyanin, Alexey
    Teng, Chu C.
    Westberg, Jonas
    Wysocki, Gerard
    Belenky, Gregory
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (07) : 1895 - 1899
  • [40] Optical properties of GaSb-based type II quantum wells as the active region of midinfrared interband cascade lasers for gas sensing applications
    Motyka, M.
    Sek, G.
    Ryczko, K.
    Misiewicz, J.
    Lehnhardt, T.
    Hoefling, S.
    Forchel, A.
    APPLIED PHYSICS LETTERS, 2009, 94 (25)