Bounds on Orthonormal Polynomials for Restricted Measures

被引:0
|
作者
Lubinsky, D. S. [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Orthogonal polynomials; Bounds; Restricted measures; ORTHOGONAL POLYNOMIALS; GROWTH;
D O I
10.1007/s00365-023-09671-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that. is a given positive measure on [-1, 1], and that mu is another measure on the real line, whose restriction to (-1, 1) is nu. We show that one can bound the orthonormal polynomials p(n) (mu, y) for mu and y is an element of R, by the supremum of | S-J ( y) p(n-J) (S-j(2)nu, y )|, where the sup is taken over all 0 <= J <= n and all monic polynomials S-J of degree J with zeros in an appropriate set.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Design and Implementation of Digital Predistorter with Orthonormal Polynomials
    Yao, Saijie
    Huang, Hao
    Qian, Hua
    2013 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2013, : 3905 - 3909
  • [32] Orthonormal polynomials in wavefront analysis: analytical solution
    Mahajan, Virendra N.
    Dai, Guang-ming
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (09) : 2994 - 3016
  • [33] ASYMPTOTIC REPRESENTATION AT A POINT OF DERIVATIVE OF ORTHONORMAL POLYNOMIALS
    GOLINSKII, BL
    MATHEMATICAL NOTES, 1976, 19 (5-6) : 397 - 404
  • [34] Orthonormal polynomials in wavefront analysis: error analysis
    Dai, Guang-ming
    Mahajan, Virendra N.
    APPLIED OPTICS, 2008, 47 (19) : 3433 - 3445
  • [35] Asymptotic behavior of polynomials orthonormal on a homogeneous set
    Peherstorfer, F
    Yuditskii, P
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 89 (1): : 113 - 154
  • [36] Orthonormal polynomials with exponential-type weights
    Jung, H. S.
    Sakai, R.
    JOURNAL OF APPROXIMATION THEORY, 2008, 152 (02) : 215 - 238
  • [37] Improved spectral cluster bounds for orthonormal systems
    Ren, Tianyi
    Zhang, An
    FORUM MATHEMATICUM, 2024, 36 (05) : 1383 - 1392
  • [38] Orthonormal polynomials for elliptical wavefronts with an arbitrary orientation
    Diaz, Jose A.
    Navarro, Rafael
    APPLIED OPTICS, 2014, 53 (10) : 2051 - 2057
  • [39] On the Sharp Inequalities for Orthonormal Polynomials Along a Contour
    F. G. Abdullayev
    G. A. Abdullayev
    Complex Analysis and Operator Theory, 2017, 11 : 1569 - 1586
  • [40] ON BOUNDS FOR GEGENBAUER POLYNOMIALS
    KHANDEKAR, PR
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1018 - &