Non-invertible symmetries and RG flows in the two-dimensional O(n) loop model

被引:4
|
作者
Jacobsen, Jesper Lykke [1 ,2 ,3 ]
Saleur, Hubert [1 ,4 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, Gif Sur Yvette, France
[2] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys Ecole Normale Super,ENS,CNRS, Paris, France
[3] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, Paris, France
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90007 USA
关键词
Lattice Integrable Models; Scale and Conformal Symmetries; SQUARE; EXPONENTS; DEFECTS;
D O I
10.1007/JHEP12(2023)090
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In a recent paper, Gorbenko and Zan [1] observed that O(n) symmetry alone does not protect the well-known renormalization group flow from the dilute to the dense phase of the two-dimensional O(n) model under thermal perturbations. We show in this paper that the required "extra protection" is topological in nature, and is related to the existence of certain non-invertible topological defect lines. We define these defect lines and discuss the ensuing topological protection, both in the context of the O(n) lattice model and in its recently understood continuum limit, which takes the form of a conformal field theory governed by an interchiral algebra.
引用
收藏
页数:29
相关论文
共 50 条
  • [22] On two-dimensional navier-stokes flows with rotational symmetries
    He, Cheng
    Miyakawa, Tetsuro
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2006, 49 (02): : 163 - 192
  • [23] The pairing symmetries in the two-dimensional Hubbard model
    Liu, Ke
    Yang, Shuhui
    Li, Weiqi
    Ying, Tao
    Yang, Jianqun
    Sun, Xiudong
    Li, Xingji
    PHYSICS LETTERS A, 2021, 392
  • [24] Extraordinary transition in the two-dimensional O(n) model
    Batchelor, MT
    Cardy, J
    NUCLEAR PHYSICS B, 1997, 506 (03) : 553 - 564
  • [25] Two-dimensional O(n) model in a staggered field
    Das, D
    Jacobsen, JL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2003 - 2037
  • [26] REDUCTION OF THE TWO-DIMENSIONAL O(N) NON-LINEAR SIGMA-MODEL
    POHLMEYER, K
    REHREN, KH
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (12) : 2628 - 2632
  • [27] Two-dimensional model for lateral intake flows
    Kolahdoozan, M
    Taher-Shamsi, A
    Sadeghi-Bagheney, M
    Mohamadian, A
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2005, 158 (04) : 141 - 150
  • [28] The shape of the renormalized trajectory in the two-dimensional O(N) non-linear sigma model
    Bock, W
    Kuti, J
    PHYSICS LETTERS B, 1996, 367 (1-4) : 242 - 248
  • [29] Two-dimensional macroscopic model of traffic flows
    Sukhinova A.B.
    Trapeznikova M.A.
    Chetverushkin B.N.
    Churbanova N.G.
    Mathematical Models and Computer Simulations, 2009, 1 (6) : 669 - 676
  • [30] Non-stationary two-dimensional potential flows by the Broadwell model equations
    Bobylev, AV
    Caraffini, GL
    Spiga, G
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2000, 19 (02) : 303 - 315