Non-invertible symmetries and RG flows in the two-dimensional O(n) loop model

被引:4
|
作者
Jacobsen, Jesper Lykke [1 ,2 ,3 ]
Saleur, Hubert [1 ,4 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, Gif Sur Yvette, France
[2] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys Ecole Normale Super,ENS,CNRS, Paris, France
[3] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, Paris, France
[4] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90007 USA
关键词
Lattice Integrable Models; Scale and Conformal Symmetries; SQUARE; EXPONENTS; DEFECTS;
D O I
10.1007/JHEP12(2023)090
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In a recent paper, Gorbenko and Zan [1] observed that O(n) symmetry alone does not protect the well-known renormalization group flow from the dilute to the dense phase of the two-dimensional O(n) model under thermal perturbations. We show in this paper that the required "extra protection" is topological in nature, and is related to the existence of certain non-invertible topological defect lines. We define these defect lines and discuss the ensuing topological protection, both in the context of the O(n) lattice model and in its recently understood continuum limit, which takes the form of a conformal field theory governed by an interchiral algebra.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Non-invertible symmetries and RG flows in the two-dimensional O(n) loop model
    Jesper Lykke Jacobsen
    Hubert Saleur
    Journal of High Energy Physics, 2023
  • [2] Non-invertible symmetries along 4d RG flows
    Damia, Jeremias Aguilera
    Argurio, Riccardo
    Benini, Francesco
    Benvenuti, Sergio
    Copetti, Christian
    Tizzano, Luigi
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
  • [3] Construction of two-dimensional topological field theories with non-invertible symmetries
    Tzu-Chen Huang
    Ying-Hsuan Lin
    Sahand Seifnashri
    Journal of High Energy Physics, 2021
  • [4] Construction of two-dimensional topological field theories with non-invertible symmetries
    Huang, Tzu-Chen
    Lin, Ying-Hsuan
    Seifnashri, Sahand
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [5] Universality and scaling in non-invertible two-dimensional maps
    Kuznetsov, SP
    Sataev, IR
    PHYSICA SCRIPTA, 1996, T67 : 184 - 187
  • [6] Non-invertible symmetries of N=4 SYM and twisted compactification
    Kaidi, Justin
    Zafrir, Gabi
    Zheng, Yunqin
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (08):
  • [7] Correction to four-loop RG functions in the two-dimensional lattice O(n) σ-model
    Shin, DS
    NUCLEAR PHYSICS B, 1999, 546 (03) : 669 - 690
  • [8] Majorana chain and Ising model - (non-invertible) translations, anomalies, and emanant symmetries
    Seiberg, Nathan
    Shao, Shu-Heng
    SCIPOST PHYSICS, 2024, 16 (03):
  • [9] Novikov-Veselov Symmetries of the Two-Dimensional O (N) Sigma Model
    Krichever, Igor
    Nekrasov, Nikita
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2022, 18
  • [10] Period-doubling for two-dimensional non-invertible maps: Renormalization group analysis and quantitative universality
    Kuznetsov, SP
    Sataev, IR
    PHYSICA D, 1997, 101 (3-4): : 249 - 269