Multicue Contrastive Self-Supervised Learning for Change Detection in Remote Sensing

被引:4
|
作者
Yang, Meijuan [1 ,2 ]
Jiao, Licheng [2 ]
Liu, Fang [2 ]
Hou, Biao [2 ]
Yang, Shuyuan [2 ]
Zhang, Yake [2 ]
Wang, Jianlong [3 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Peoples R China
[2] Xidian Univ, Sch Artificial Intelligence, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Xian 710071, Peoples R China
[3] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Change detection (CD); contrastive self-supervised learning (CSSL); dense features; feature matching; local self-similarity descriptor; remote sensing; UNSUPERVISED CHANGE DETECTION; AUTOMATIC CHANGE DETECTION; IMAGES;
D O I
10.1109/TGRS.2023.3330494
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Contrastive self-supervised learning (CSSL) is a promising method for extracting effective features from unlabeled data. It performs well in image-level tasks, such as image classification and retrieval. However, the existing CSSL methods are not suitable for pixel-level tasks, for example, change detection (CD), since they ignore the correlation between local patches or pixels. In this article, we first propose a multicue CSSL (MC-CSSL) method to derive dense features for CD. Besides data augmentation, the MC-CSSL takes advantage of more cues based on the semantic meaning and temporal correlation of local patches. Specifically, the positive pair is built from local patches with similar semantic meanings or temporal ones with the same geographic location. The assumption is that local patches belonging to the same kind of land-covering tend to share similar features. Second, the affinity matrix is truncated and introduced to extract change information between two temporal patches obtained from different types of sensors. As a result, some initial unchanged pixels are selected to serve as the supervision for mapping the dense features into a consistent space. Based on the distance between all bitemporal pixels in the consistent space, a difference image (DI) is generated and more unchanged pixels can be available. The dense feature mapping and unchanged pixel updating proceed alternately. The proposed CD method is evaluated in both homogeneous and heterogeneous cases, and the experimental results demonstrate its effectiveness and priority after comparison with some existing state-of-the-art methods. The source code will be available at https://github.com/Yang202308/ChangeDetection_CSSL.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [22] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [23] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [24] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [25] Contrastive self-supervised learning for diabetic retinopathy early detection
    Ouyang, Jihong
    Mao, Dong
    Guo, Zeqi
    Liu, Siguang
    Xu, Dong
    Wang, Wenting
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (09) : 2441 - 2452
  • [26] Contrastive Self-Supervised Learning for Globally Distributed Landslide Detection
    Ghorbanzadeh, Omid
    Shahabi, Hejar
    Piralilou, Sepideh Tavakkoli
    Crivellari, Alessandro
    La Rosa, Laura Elena Cue
    Atzberger, Clement
    Li, Jonathan
    Ghamisi, Pedram
    IEEE ACCESS, 2024, 12 : 118453 - 118466
  • [27] CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning
    Guille-Escuret, Charles
    Rodriguez, Pau
    Vazquez, David
    Mitliagkas, Ioannis
    Monteiro, Joao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] Contrastive self-supervised learning for diabetic retinopathy early detection
    Jihong Ouyang
    Dong Mao
    Zeqi Guo
    Siguang Liu
    Dong Xu
    Wenting Wang
    Medical & Biological Engineering & Computing, 2023, 61 : 2441 - 2452
  • [29] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [30] Shot Contrastive Self-Supervised Learning for Scene Boundary Detection
    Chen, Shixing
    Nie, Xiaohan
    Fan, David
    Zhang, Dongqing
    Bhat, Vimal
    Hamid, Raffay
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9791 - 9800