Climate mitigation models need to become circular - let's start with the construction sector

被引:6
|
作者
Lima, Ana T. [1 ]
Simoes, Sofia G. [2 ]
Aloini, Davide [3 ]
Zerbino, Pierluigi [3 ]
Oikonomou, Theoni I. [4 ]
Karytsas, Spyridon [4 ]
Karytsas, Constantine [4 ]
Calvo, Oscar Seco [5 ]
Porcar, Beatriz [5 ]
Herrera, I. [5 ]
Slabik, Simon [6 ]
Duerr, Hans H. [7 ]
Genovese, Andrea [8 ]
Bimpizas-Pinis, Meletios [8 ]
机构
[1] Tech Univ Denmark, Dept Environm & Resource Engn, DTU Sustain, Lyngby, Denmark
[2] LNEG Natl Lab Energy & Geol, P-2720999 Amadora, Portugal
[3] Univ Pisa, Dept Energy Syst Land & Construct Engn, Pisa, Italy
[4] Ctr Renewable Energy Sources & Saving, Renewable Energy Sources Div, Pikermi, Greece
[5] CIEMAT Ctr Invest Energet Medioambientales & Tecn, Energy Dept, Energy Efficiency Bldg Unit, Madrid, Spain
[6] Ruhr Univ Bochum, Dept Resource Efficient Bldg, Bochum, Germany
[7] Ruhr Univ Bochum, Dept Engn Hydrol & Water Resources Management, Bochum, Germany
[8] Univ Sheffield, Sheffield Univ Management Sch, Sheffield, S Yorkshire, England
关键词
Climate mitigation models; Circular economy; Life cycle assessment; Material flow analysis; Carbon intensive materials;
D O I
10.1016/j.resconrec.2022.106808
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector
    Wei, Xinyang
    Tong, Qing
    Magill, Iain
    Vithayasrichareon, Peerapat
    Betz, Regina
    ENERGY ECONOMICS, 2020, 92
  • [42] Climate mitigation's impact on global and regional electric power sector water use in the 21st Century
    Dooley, James J.
    Kyle, Page
    Davies, Evan G. R.
    GHGT-11, 2013, 37 : 2470 - 2478
  • [43] Material circularity indicator for accelerating low-carbon circular economy in Thailand's building and construction sector
    Poolsawad, Nongnuch
    Chom-in, Tassaneewan
    Samneangngam, Jantima
    Suksatit, Prakaytham
    Songma, Khaowpradabdin
    Thamnawat, Saowalak
    Kanoksirirath, Somrath
    Mungcharoen, Thumrongrut
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (04)
  • [44] Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models
    Odenweller, Adrian
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2022, 178
  • [45] CO2-emission reduction in China's residential building sector and contribution to the national climate change mitigation targets in 2020
    Oberheitmann, Andreas
    MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2012, 17 (07) : 769 - 791
  • [46] CO2-emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020
    Andreas Oberheitmann
    Mitigation and Adaptation Strategies for Global Change, 2012, 17 : 769 - 791
  • [47] Towards a low-carbon future in China's building sector - A review of energy and climate models forecast
    Li, Jun
    ENERGY POLICY, 2008, 36 (05) : 1736 - 1747
  • [48] Hybrid Framework Linking Energy Systems and General Equilibrium Economic Models to Evaluate Climate Change Mitigation Policies for the Transport Sector in Rio De Janeiro, Brazil
    da Silva, Tatiana Bruce
    Baptista, Patrícia
    Santos Silva, Carlos A.
    Santos, Luan
    SSRN, 2022,
  • [49] Transitioning from green to circular procurement in developing countries: a conceptual framework for Ghana's construction sector (Jul, 10.1080/09613218.2023.2229456, 2023)
    Ababio, Benjamin Kwaku
    Lu, Weisheng
    Ghansah, Frank Ato
    BUILDING RESEARCH AND INFORMATION, 2023,
  • [50] The ability of Building Stock Energy Models (BSEMs) to facilitate the sector's climate change target in the face of socioeconomic uncertainties: A review
    Al Shawa, Bashar
    ENERGY AND BUILDINGS, 2022, 254