Composites based on polymeric blends reinforced with TiO2 modified aramid fibers

被引:3
|
作者
Pelin, Cristina-Elisabeta [1 ]
Sonmez, Maria [2 ,3 ,6 ,7 ]
Pelin, George [1 ]
Stefan, Adriana [1 ]
Stelescu, Maria Daniela [2 ,3 ]
Ignat, Madalina [3 ,4 ]
Gurau, Dana [3 ,5 ]
Georgescu, Mihai [2 ,3 ]
Nituica, Mihaela [2 ,3 ]
机构
[1] INCAS Natl Inst Aerosp Res Elie Carafoli, Mat & Tribol Unit, Bucharest, Romania
[2] Natl Res & Dev Inst Text & Leather, Rubber Res Dept, Div Leather, Bucharest, Romania
[3] Natl Res & Dev Inst Text & Leather, Footwear Res Inst, Bucharest, Romania
[4] Natl Res & Dev Inst Text & Leather, Testing & Qual Control Dept, Div Leather, Bucharest, Romania
[5] Natl Res & Dev Inst Text & Leather, Informat & Disseminat Dept, Div Leather, Bucharest, Romania
[6] Natl Res & Dev Inst Text & Leather, Div Leather, Ion Minulescu St 93, Bucharest, Romania
[7] Natl Res & Dev Inst Text & Leather, Footwear Res Inst, Ion Minulescu St 93, Bucharest, Romania
关键词
aramid fiber; compatibilization; mechanical and morpho-structural properties; polypropylene; thermoforming process; TiO2; INTERFACIAL STRENGTH; SURFACE MODIFICATION; PERFORMANCE; FABRICATION; IMPROVEMENT; RESISTANCE;
D O I
10.1002/pc.28254
中图分类号
TB33 [复合材料];
学科分类号
摘要
The paper presents a study on composites based on 50:50 (PP:LLPE-g-MA) reinforced with 0.5, 1, and 2 wt% aramid fibers unmodified/modified with TiO2, processed by melt compounding. Micronic aramid fibers were acetone washed to remove impurities and treated with Ti(IV)isopropoxide precursor via sol-gel method, adding microcellulose for TiO2 particle dimension control. Composites were hot-pressed into 4 mm-thick plates for sampling and 0.5 mm-thick sheets for thermoforming. All composites were successfully thermoformed, fibers-based samples showing improved thermoforming ability without wrinkling. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the formation of TiO2 particles on the fiber surface. Optical microscopy, SEM and FTIR analysis exhibit the fibers' strong embedment into the matrix due to physical interlocking, generating surface defect reduction. Water absorption decreased from 0.195% (control) to 0.075 and 0% for 1 TiO2 and 2 TiO2 samples, due to material compactization. Contact angles increased from 95.18 degrees (Control) to 108 degrees (1 TiO2) and 112.89 degrees (2 TiO2). The highest flexural strength and modulus were exhibited by 1 TiO2 sample that increased by 44.88% and 47.6% compared to the control sample, due to higher intrinsic rigidity of fibers and TiO2 modifying surface rugosity and phase interaction. The impact strength of the control sample improved by 139% compared to PP due to brittleness reduction, 1 TiO2 by 209% compared to PP, 29% compared to the control sample. The results and excellent thermoformability recommend the materials for encapsulation of electronic/expensive parts in automotive or drone applications, offering viable, facile, rapid, and cost-effective solutions to easily replace damaged parts.
引用
收藏
页码:7116 / 7136
页数:21
相关论文
共 50 条
  • [31] Analysis of the Mechanical Strength of Polymeric Composites Reinforced with Sisal Fibers
    Bosquetti, Matheus
    da Silva, Amanda Leite
    Azevedo, Elaine Cristina
    Berti, Lucas Freitas
    JOURNAL OF NATURAL FIBERS, 2021, 18 (01) : 105 - 110
  • [32] Corrosion resistance of TiO2 reinforced eucalyptus/polyvinyl chloride composites
    Shao X.
    He C.
    Duan G.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2019, 36 (01): : 77 - 84
  • [33] Investigation of Properties ZnO, CuO, and TiO2 Reinforced Polypropylene Composites
    Gundogan, Kadir
    Orturk, Dilan Koksal
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (05): : 414 - 419
  • [34] SYNTHESIS AND CHARACTERIZATION OF TiO2 REINFORCED Al6061 COMPOSITES
    Kumar, G. B. Veeresh
    Gouda, P. S. Shivakumar
    Pramod, R.
    Rao, C. S. P.
    ADVANCED COMPOSITES LETTERS, 2017, 26 (01) : 18 - 23
  • [35] The structure and properties of 2024 aluminum composites reinforced with TiO2 nanoparticles
    Shin, J. H.
    Choi, H. J.
    Bae, D. H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 607 : 605 - 610
  • [36] Creep Properties in TiO2 Nanoparticle Reinforced Aluminum Matrix Composites
    Shin, Jaehyuck
    Bae, Donghyun
    ADVANCED ENGINEERING MATERIALS, 2013, 15 (11) : 1029 - 1033
  • [37] Surface study of composite photocatalyst based on plasma modified activated carbon fibers with TiO2
    Mo, Deqing
    Ye, DaiQi
    SURFACE & COATINGS TECHNOLOGY, 2009, 203 (09): : 1154 - 1160
  • [38] Influence of aramid fibers modified by glycidyl polyhedral silsesquioxane assisted with supercritical carbon dioxide on the properties of aramid fiber-reinforced styrene butadiene rubber composites
    Li, Yang
    Shi, Caiwen
    Pan, Xiaoli
    Yang, Le
    Zhang, Chun
    POLYMER INTERNATIONAL, 2024, 73 (06) : 454 - 463
  • [39] Polymeric solar cell with 18.06% efficiency based on poly (para-nitroaniline)/TiO2 composites
    Alturki, Abdulaziz A.
    Alharbi, Abdulrahman Fahd
    Zoromba, M. Sh
    Abdel-Aziz, M. H.
    Al-Hossainy, F.
    OPTICAL MATERIALS, 2023, 136
  • [40] Fatigue Behavior of HDPE Composite Reinforced with Silane Modified TiO2
    Dong, C. X.
    Zhu, S. J.
    Mizuno, Mineo
    Hashimoto, Masami
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (07) : 659 - 667