Topological transitions in dissipatively coupled Su-Schrieffer-Heeger models

被引:4
|
作者
Nair, Jayakrishnan M. P. [1 ,2 ,5 ]
Scully, Marlan O. [1 ,2 ,3 ,4 ]
Agarwal, Girish S. [1 ,2 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[3] Baylor Univ, Waco, TX 76704 USA
[4] Princeton Univ, Princeton, NJ 08544 USA
[5] Boston Coll, Dept Phys, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA
关键词
STATES;
D O I
10.1103/PhysRevB.108.184304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-Hermitian topological phenomena have gained much interest among physicists in recent years. In this paper, we expound on the physics of dissipatively coupled Su-Schrieffer-Heeger (SSH) lattices, specifically in systems with bosonic and electrical constituents. In the context of electrical circuits, we demonstrate that a series of resistively coupled LCR circuits mimics the topology of a dissipatively coupled SSH model. In addition, we propose a scheme to construct dissipatively coupled SSH lattices involving a set of noninteracting bosonic oscillators weakly coupled to engineered reservoirs of modes possessing substantially small lifetimes when compared to other system timescales. Further, by activating the coherent coupling between bosonic oscillators, we elucidate the emergence of nonreciprocal dissipative coupling, which can be controlled by the phase of the coherent interaction strength precipitating in phase-dependent topological transitions and skin effect. Our analyses are generic, apropos of a large class of systems involving, for instance, optical and microwave settings, while the circuit implementation represents the most straightforward of them.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Topological photonic Tamm states and the Su-Schrieffer-Heeger model
    Henriques, J. C. G.
    Rappoport, T. G.
    Bludov, Y., V
    Vasilevskiy, M., I
    Peres, N. M. R.
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [22] Acoustic Su-Schrieffer-Heeger lattice: Direct mapping of acoustic waveguides to the Su-Schrieffer-Heeger model
    Coutant, Antonin
    Sivadon, Audrey
    Zheng, Liyang
    Achilleos, Vassos
    Richoux, Olivier
    Theocharis, Georgios
    Pagneux, Vincent
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [23] Topological gap solitons in Rabi Su-Schrieffer-Heeger lattices
    Li, Chunyan
    Kartashov, Yaroslav V.
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [24] Topological properties of a generalized spin-orbit-coupled Su-Schrieffer-Heeger model
    Bahari, Masoud
    Hosseini, Mir Vahid
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 119 (119):
  • [25] Multiband topology in acoustic coupled Su-Schrieffer-Heeger chains
    Guo, Peng-Yu
    Wang, Li-Wei
    Li, Wei
    Hu, Junhui
    Jiang, Jian-Hua
    Wang, Hai-Xiao
    PHYSICAL REVIEW APPLIED, 2024, 22 (05):
  • [26] Different topological phase transitions in the Su-Schrieffer-Heeger model under different disorder structures
    Gu, Yan
    Lu, Zhanpeng
    CHINESE PHYSICS B, 2024, 33 (09)
  • [27] Dynamical Topological Phase Transitions in Nonlinear Su-Schrieffer-Heeger Lattices via Soliton Interactions
    Bongiovanni, Domenico
    Jukic, Dario
    Hu, Zhichan
    Lunic, Frane
    Hu, Yi
    Song, Daohong
    Morandotti, Roberto
    Chen, Zhigang
    Buljan, Hrvoje
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [28] Reentrant localization transitions in a topological Anderson insulator: A study of a generalized Su-Schrieffer-Heeger quasicrystal
    Lu, Zhanpeng
    Zhang, Yunbo
    Xu, Zhihao
    FRONTIERS OF PHYSICS, 2025, 20 (02):
  • [29] Downfolding the Su-Schrieffer-Heeger model
    Schobert, Arne
    Berges, Jan
    Wehling, Tim
    van Loon, Erik
    SCIPOST PHYSICS, 2021, 11 (04):
  • [30] Macroscopic Zeno Effect in a Su-Schrieffer-Heeger Photonic Topological Insulator
    Ivanov, Sergey K.
    Zhuravitskii, Sergei A.
    Skryabin, Nikolay N.
    Dyakonov, Ivan V.
    Kalinkin, Alexander A.
    Kulik, Sergei P.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zadkov, Victor N.
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)