Neighbourhood complexity of graphs of bounded twin-width

被引:3
|
作者
Bonnet, Edouard [1 ]
Foucaud, Florent [2 ,3 ]
Lehtila, Tuomo [4 ,5 ]
Parreau, Aline [6 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, LIP UMR5668, ENS Lyon,CNRS, Lyon, France
[2] Univ Clermont Auvergne, LIMOS, Mines St Etienne, CNRS,Clermont Auvergne INP, F-63000 Clermont Ferrand, France
[3] Univ Orleans, INSA Ctr Val de Loire, LIFO EA 4022, F-45067 Orleans 2, France
[4] Univ Lyon, UCBL, CNRS, LIRIS UMR 5205, F-69622 Lyon, France
[5] Univ Turku, Dept Math & Stat, Turku, Finland
[6] Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon,UCBL,Cent Lyon,LIRIS,UMR5205, F-69622 Villeurbanne, France
基金
芬兰科学院;
关键词
D O I
10.1016/j.ejc.2023.103772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give essentially tight bounds for, nu(d, k), the maximum number of distinct neighbourhoods on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus- Tardos theorem, two independent works (Bonnet et al., 2022; Przybyszewski, 2022) have shown the upper bound nu(d, k) <= exp(exp(O(d)))k, with a double-exponential dependence in the twin-width. The work of Gajarsky et al. (2022), using the frame-work of local types, implies the existence of a single-exponential bound (without explicitly stating such a bound). We give such an explicit bound, and prove that it is essentially tight. Indeed, we give a short self-contained proof that for every d and k nu(d, k) <= (d + 2)2(d+1)k = 2(d+logd+Theta(1))k,and build a bipartite graph implying nu(d, k) >= 2(d+logd+Theta(1)k), in the regime when k is large enough compared to d.(c) 2023 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Characterising bounded expansion by neighbourhood complexity
    Reidl, Felix
    Villaamil, Fernando Sanchez
    Stavropoulos, Konstantinos
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 75 : 152 - 168
  • [32] Twin-width and generalized coloring numbers( vol 345 ,112746 ,2022)
    Dreier, Jan
    Gajarsky, Jakub
    Jiang, Yiting
    de Mendez, Patrice Ossona
    Raymond, Jean-Florent
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [33] TWIN-WIDTH III: MAX INDEPENDENT SET, MIN DOMINATING SET, AND COLORING
    Bonnet, Edouard
    Geniet, Colin
    Kim, Eun Jung
    Thomasse, Stephan
    Watrigant, Remi
    SIAM Journal on Computing, 2024, 53 (05) : 1602 - 1640
  • [34] Isomorphism for graphs of bounded distance width
    Yamazaki, K.
    Bodlaender, H.L.
    de Fluiter, B.
    Thilikos, D.M.
    Algorithmica (New York), 1999, 24 (02): : 105 - 127
  • [35] Isomorphism for graphs of bounded distance width
    Yamazaki, K
    Bodlaender, HL
    de Fluiter, B
    Thilikos, DM
    ALGORITHMS AND COMPLEXITY, 1997, 1203 : 276 - 287
  • [36] Isomorphism for Graphs of Bounded Distance Width
    K. Yamazaki
    H. L. Bodlaender
    B. de Fluiter
    D. M. Thilikos
    Algorithmica, 1999, 24 : 105 - 127
  • [37] Isomorphism for graphs of bounded distance width
    Yamazaki, K
    Bodlaender, HL
    de Fluiter, B
    Thilikos, DM
    ALGORITHMICA, 1999, 24 (02) : 105 - 127
  • [38] Metric Dimension of Bounded Width Graphs
    Belmonte, Remy
    Fomin, Fedor V.
    Golovach, Petr A.
    Ramanujan, M. S.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 115 - 126
  • [39] UNIVERSAL GRAPHS FOR GRAPHS WITH BOUNDED PATH-WIDTH
    TAKAHASHI, A
    UENO, S
    KAJITANI, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1995, E78A (04) : 458 - 462
  • [40] Partitioning Graphs of Bounded Tree-Width
    Guoli Ding
    Bogdan Oporowski
    Daniel P. Sanders
    Dirk Vertigan
    Combinatorica, 1998, 18 : 1 - 12