Neighbourhood complexity of graphs of bounded twin-width

被引:3
|
作者
Bonnet, Edouard [1 ]
Foucaud, Florent [2 ,3 ]
Lehtila, Tuomo [4 ,5 ]
Parreau, Aline [6 ]
机构
[1] Univ Claude Bernard Lyon 1, Univ Lyon, LIP UMR5668, ENS Lyon,CNRS, Lyon, France
[2] Univ Clermont Auvergne, LIMOS, Mines St Etienne, CNRS,Clermont Auvergne INP, F-63000 Clermont Ferrand, France
[3] Univ Orleans, INSA Ctr Val de Loire, LIFO EA 4022, F-45067 Orleans 2, France
[4] Univ Lyon, UCBL, CNRS, LIRIS UMR 5205, F-69622 Lyon, France
[5] Univ Turku, Dept Math & Stat, Turku, Finland
[6] Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon,UCBL,Cent Lyon,LIRIS,UMR5205, F-69622 Villeurbanne, France
基金
芬兰科学院;
关键词
D O I
10.1016/j.ejc.2023.103772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give essentially tight bounds for, nu(d, k), the maximum number of distinct neighbourhoods on a set X of k vertices in a graph with twin-width at most d. Using the celebrated Marcus- Tardos theorem, two independent works (Bonnet et al., 2022; Przybyszewski, 2022) have shown the upper bound nu(d, k) <= exp(exp(O(d)))k, with a double-exponential dependence in the twin-width. The work of Gajarsky et al. (2022), using the frame-work of local types, implies the existence of a single-exponential bound (without explicitly stating such a bound). We give such an explicit bound, and prove that it is essentially tight. Indeed, we give a short self-contained proof that for every d and k nu(d, k) <= (d + 2)2(d+1)k = 2(d+logd+Theta(1))k,and build a bipartite graph implying nu(d, k) >= 2(d+logd+Theta(1)k), in the regime when k is large enough compared to d.(c) 2023 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Neighbourhood complexity of graphs of bounded twin-width
    Bonnet, Édouard
    Foucaud, Florent
    Lehtilä, Tuomo
    Parreau, Aline
    arXiv, 2023,
  • [2] Graphs of bounded twin-width are quasi-polynomially ?-bounded
    Pilipczuk, Michal
    Sokolowski, Marek
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 161 : 382 - 406
  • [3] Distal combinatorial tools for graphs of bounded twin-width
    Przybyszewski, Wojciech
    2023 38TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS, 2023,
  • [4] Twin-width of random graphs
    Ahn, Jungho
    Chakraborti, Debsoumya
    Hendrey, Kevin
    Kim, Donggyu
    Oum, Sang-il
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (04) : 794 - 831
  • [5] BOUNDS FOR THE TWIN-WIDTH OF GRAPHS
    Ahn, Jungho
    Hendrey, Kevin
    Kim, Donggyu
    Oum, Sang-Il
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 2352 - 2366
  • [6] Twin-width of graphs on surfaces
    Král, Daniel
    Pekárková, Kristýna
    Štorgel, Kenny
    arXiv, 2023,
  • [7] Bounding Twin-Width for Bounded-Treewidth Graphs, Planar Graphs, and Bipartite Graphs
    Jacob, Hugo
    Pilipczuk, Marcin
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 287 - 299
  • [8] Twin-width of sparse random graphs
    Hendrey, Kevin
    Norin, Sergey
    Steiner, Raphael
    Turcotte, Jeremie
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [9] Bounds on the Twin-Width of Product Graphs
    Pettersson, William
    Sylvester, John
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2023, 25 (01):
  • [10] Twin-Width IV: Ordered Graphs and Matrices
    Bonnet, Edouard
    Giocanti, Ugo
    de Mendez, Patrice Ossona
    Simon, Pierre
    Thomasse, Stephan
    Torunczyk, Szymon
    JOURNAL OF THE ACM, 2024, 71 (03)