Extremum Seeking-Based Adaptive Sliding Mode Control with Sliding Perturbation Observer for Robot Manipulators

被引:2
|
作者
Khan, Hamza [1 ]
Lee, Min Cheol [1 ]
机构
[1] Pusan Natl Univ, Sch Mech Engn, Busan, South Korea
关键词
CONTROL DESIGN;
D O I
10.1109/ICRA48891.2023.10160262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposed an adaptive robust sliding mode control (SMC) with a nonlinear sliding perturbation observer (SPO) for robot manipulators. SPO estimates the perturbation (nonlinearities, uncertainties, and disturbances) with minimal system information and enhances the controller performance. The estimation is mainly dependent on the selection of SMCSPO gain, and if not tuned well, it might result in increased error dynamics of the system. Therefore, minimizing the error dynamics by improving the estimation is the primary goal of this research. In this regard, the current study accomplishes adaptation of controller gain in real-time by using an optimization technique called extremum seeking (ES). The quality adaptation is controlled with the help of a cost function. Based on the Lyapunov-based stability analysis of SMCSPO, the cost function consisting of the estimation error of the observer and error dynamics is proposed. The unique cost function now guarantees the tracking performance within the defined error tolerance. The effectiveness of the proposed algorithm is illustrated and validated in simulation and experiments. It is shown that the adaptation based on ES with the proposed cost function converges to the optimal control gain enabling the reduced estimation error and error dynamics with enhanced tracking performance.
引用
收藏
页码:5284 / 5290
页数:7
相关论文
共 50 条
  • [21] An adaptive fuzzy controller based on sliding mode for robot manipulators
    Sun, FC
    Sun, ZQ
    Feng, G
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (05): : 661 - 667
  • [22] Adaptive fuzzy controller based on sliding mode for robot manipulators
    Tsinghua Univ, Beijing, China
    IEEE Trans Syst Man Cybern Part B Cybern, 5 (661-667):
  • [23] Sliding Mode Control with Sliding Perturbation Observer for Surgical Robots
    Song, Young-Eun
    Kim, Chi-Yen
    Lee, Min-Cheol
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 2119 - 2124
  • [24] Fuzzy Disturbance Observer-based Adaptive Backstepping Sliding Mode Control of Manipulators
    Wei, Wu
    Xia, Shoucheng
    Pang, Jiankun
    Chen, Yao
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1224 - 1229
  • [25] Extremum seeking-based adaptive control for electromagnetic actuators
    Benosman, Mouhacine
    Atinc, Goekhan M.
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (03) : 517 - 530
  • [26] Sliding Mode Switching Control of Manipulators Based on Disturbance Observer
    Lei Yu
    Jun Huang
    Shumin Fei
    Circuits, Systems, and Signal Processing, 2017, 36 : 2574 - 2585
  • [27] Sliding Mode Switching Control of Manipulators Based on Disturbance Observer
    Yu, Lei
    Huang, Jun
    Fei, Shumin
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (06) : 2574 - 2585
  • [28] Acceleration slip regulation based on extremum seeking control with sliding mode
    Zhou, Bing
    Xu, Meng
    Yuan, Xiwen
    Fan, Lu
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2015, 46 (02): : 307 - 311
  • [29] Output feedback sliding mode control based on adaptive sliding mode disturbance observer
    Chen Yunjun
    Jiang Chao
    Dong Jiuzhi
    Zhao Zhanshan
    MEASUREMENT & CONTROL, 2022, 55 (7-8): : 646 - 656
  • [30] Robust Sliding Mode Control for Robot Manipulators
    Islam, Shafiqul
    Liu, Xiaoping P.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (06) : 2444 - 2453