Analysis of power loss in forward converter transformer using a novel machine learning-based optimization framework

被引:3
|
作者
Patil, Pavankumar R. [1 ]
Tanavade, Satish [2 ]
Dinesh, M. N. [3 ]
机构
[1] Sharad Inst Technol, Dept Elect Engn, Coll Engn, Yadrav 416121, Maharashtra, India
[2] Natl Univ Sci & Technol, Coll Engn, Dept Elect & Commun Engn, Muscat, Oman
[3] RV Coll Engn, Dept Elect & Elect Engn, Bengaluru 560059, Karnataka, India
关键词
Forward converter; Machine learning; Optimization; Power loss; Transformer; Wind system; KRILL HERD ALGORITHM; INPUT; DESIGN; DRIVE;
D O I
10.1007/s00500-022-07491-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In wind energy systems, high voltage gain and high power-based forward converters are mainly used for switched-mode power supplies. However, due to the wide range of load usage in grid systems, the reliability and power loss in forward converter-based system performance became crucial. Many earlier researches are conducted to validate the performance of forward converters in renewable resources. But, effective improvement is not achieved for wind applications. Thus, in this paper, the novel grey wolf-based boosting intelligent frame (GWbBIF) control algorithm is proposed in forward converter switching controls. The gain of the controller and duty cycle of the converter is tuned by the proposed control approach. Consequently, the power loss from the wind transformer is optimized by the proposed grey wolf fitness function. The implementation of this research has been done on the MATLAB/Simulink platform. The simulation outcomes of the proposed system are compared with various conventional techniques in terms of total harmonic distortion (THD), power loss, stability, error, driving circuit, etc. While compared with the other methods, the proposed methods effectively show the optimal performance of forward converter in wind system by reduced power loss and improved reliability that is considered as the significant aspects while estimating the entire system.
引用
收藏
页码:3733 / 3749
页数:17
相关论文
共 50 条
  • [21] Machine learning-based optimization and performance analysis of cooling towers
    Salins, Sampath Suranjan
    Kumar, Shiva
    Ganesha, A.
    Reddy, S. V. Kota
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [22] A novel deep unsupervised learning-based framework for optimization of truss structures
    Hau T. Mai
    Qui X. Lieu
    Joowon Kang
    Jaehong Lee
    Engineering with Computers, 2023, 39 : 2585 - 2608
  • [23] A novel deep unsupervised learning-based framework for optimization of truss structures
    Mai, Hau T.
    Lieu, Qui X.
    Kang, Joowon
    Lee, Jaehong
    ENGINEERING WITH COMPUTERS, 2023, 39 (04) : 2585 - 2608
  • [24] RETRACTED ARTICLE: A novel machine learning-based framework for channel bandwidth allocation and optimization in distributed computing environments
    Miaoxin Xu
    EURASIP Journal on Wireless Communications and Networking, 2023
  • [25] Validation of a Machine Learning-Based IDS Design Framework Using ORNL Datasets for Power System With SCADA
    Zaman, Marzia
    Upadhyay, Darshana
    Lung, Chung-Horng
    IEEE ACCESS, 2023, 11 : 118414 - 118426
  • [26] A Parallel Simulation Framework Incorporating Machine Learning-Based Hotspot Detection for Accelerated Power Grid Analysis
    Jiang, Yangfan
    Song, Jianfei
    Yang, Xiaoyu
    Dong, Xiao
    Sun, Songyu
    Lin, Yibo
    Jin, Zhou
    Yin, Xunzhao
    Zhuo, Cheng
    PROCEEDINGS OF THE 2024 ACM/IEEE INTERNATIONAL SYMPOSIUM ON MACHINE LEARNING FOR CAD, MLCAD 2024, 2024,
  • [27] Identifying localized amenities for gentrification using a machine learning-based framework
    Zeng, Jin
    Yue, Yang
    Gao, Qili
    Gu, Yanyan
    Ma, Chenglin
    APPLIED GEOGRAPHY, 2022, 145
  • [28] A machine learning-based process operability framework using Gaussian processes
    Alves, Victor
    Gazzaneo, Vitor
    Lima, Fernando, V
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 163
  • [29] Novel Power Transformer Fault Diagnosis Using Optimized Machine Learning Methods
    Taha, Ibrahim B. M.
    Mansour, Diaa-Eldin A.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 28 (03): : 739 - 752
  • [30] A novel machine learning-based framework to extract the urban flood susceptible regions
    Tang, Xianzhe
    Tian, Juwei
    Huang, Xi
    Shu, Yuqin
    Liu, Zhenhua
    Long, Shaoqiu
    Xue, Weixing
    Liu, Luo
    Lin, Xueming
    Liu, Wei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132