Polynomization of the Bessenrodt-Ono Type Inequalities for A-Partition Functions

被引:1
|
作者
Gajdzica, Krystian [1 ]
Heim, Bernhard [2 ,4 ]
Neuhauser, Markus [3 ,4 ]
机构
[1] Jagiellonian Univ, Inst Math, Fac Math & Comp Sci, S Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Univ Cologne, Math Inst, Fac Math & Nat Sci, Weyertal 86-90, D-50931 Cologne, Germany
[3] Kutaisi Int Univ, Youth Ave 5-7, Kutaisi 4600, Georgia
[4] Rhein Westfal TH Aachen, Lehrstuhl A Math, D-52056 Aachen, Germany
关键词
Partition; Restricted partition function; Unrestricted partition function; Polynomization; Bessenrodt-Ono inequality; SERIES; PARTS; PROOF;
D O I
10.1007/s00026-024-00692-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary set or multiset A of positive integers, we associate the A-partition function pA (n) (that is the number of partitions of n whose parts belong to A). We also consider the analogue of the k-colored partition function, namely ,pA,-k(n). Further, we define a family of polynomials f(A,n)(x) which satisfy the equality f(A,n)(k)=pA,-k(n)forall n is an element of Z >= 0 and k is an element of N. This paper concerns a polynomialization of the Bessenrodt-Ono inequality, namely f(A,a)(x)f(A,b)(x)>f(A,a+b)(x), where a,b are positive integers. We determine efficient criteria for the solutions of this inequality. Moreover, we also investigate a few basic properties related to both functions f(A,n)(x) and f '(A,n)(x)
引用
收藏
页码:1323 / 1345
页数:23
相关论文
共 50 条
  • [21] Sharp Inequalities for Ratios of Partition Functions of Schrödinger Operators
    Dahae You
    Potential Analysis, 2003, 18 : 219 - 250
  • [22] Turan inequalities for the broken k-diamond partition functions
    Dong, Janet J. W.
    Ji, Kathy Q.
    Jia, Dennis X. Q.
    RAMANUJAN JOURNAL, 2023, 62 (02): : 593 - 615
  • [23] Turan inequalities for k-th power partition functions
    Benfield, Brennan
    Paul, Madhumita
    Roy, Arindam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [24] On Jordan Type Inequalities for Hyperbolic Functions
    R Klén
    M Visuri
    M Vuorinen
    Journal of Inequalities and Applications, 2010
  • [25] INEQUALITIES FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE
    GENCHEV, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 183 - 188
  • [26] Turan type inequalities for Kratzel functions
    Baricz, Arpad
    Jankov, Dragana
    Pogany, Tibor K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 716 - 724
  • [27] On Lyapunov type inequalities for symmetric functions
    Zhao, Chang-Jian
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3169 - 3176
  • [28] Turan type inequalities for Struve functions
    Baricz, Arpad
    Ponnusamy, Saminathan
    Singh, Sanjeev
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 971 - 984
  • [29] Isoperimetric type inequalities for harmonic functions
    Kalaj, David
    Mestrovic, Romeo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 439 - 448
  • [30] OSTROWSKI TYPE INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Kavurmaci, Havva
    Avci, Merve
    TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (04): : 335 - 340