Molecular Design for Vertical Phase Distribution Modulation in High-Performance Organic Solar Cells

被引:12
|
作者
Chen, Zhihao [1 ]
Zhang, Shaoqing [1 ,2 ]
Ren, Junzhen [1 ,3 ]
Zhang, Tao [1 ,3 ]
Dai, Jiangbo [1 ,3 ]
Wang, Jingwen [1 ,3 ]
Ma, Lijiao [1 ]
Qiao, Jiawei [4 ]
Hao, Xiaotao [4 ]
Hou, Jianhui [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, State Key Lab Polymer Phys & Chem, Beijing 100190, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Chem & Biol Engn, Beijing 100083, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
charge transport; organic solar cells; power conversion efficiency; surface free energy; vertical phase distribution; SEPARATION; EXCITON;
D O I
10.1002/adma.202310390
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Component distribution within the photoactive layer dictates the morphology and electronic structure and substantially influences the performance of organic solar cells (OSCs). In this study, a molecular design strategy is introduced to manipulate component and energetics distribution by adjusting side-chain polarity. Two non-fullerene acceptors (NFAs), ITIC-16F and ITIC-E, are synthesized by introducing different polar functional substituents onto the side chains of ITIC. The alterations result in different distribution tendencies in the bulk heterojunction film: ITIC-16F with intensified hydrophobicity aligns predominantly with the top surface, while ITIC-E with strong hydrophilicity gravitates toward the bottom. This divergence directly impacts the vertical distribution of the excitation energy levels, thereby influencing the excitation kinetics over extended time periods and larger spatial ranges including enhanced diffusion-mediated exciton dissociation and stimulated charge carrier transport. Benefitting from the favorable energy distribution, the device incorporating ITIC-E into the PBQx-TF:eC9-2Cl blend showcases an impressive power conversion efficiency of 19.4%. This work highlights side-chain polarity manipulation as a promising strategy for designing efficient NFA molecules and underscores the pivotal role of spatial energetics distribution in OSC performance. This study explores the effect of side-chain polarity on organic solar cells (OSCs) performance by synthesizing two non-fullerene acceptors, ITIC-16F and ITIC-E. It shows that side-chain polarity influences component distribution within the photoactive layer, affecting excitation energy levels and charge transport. Incorporating ITIC-E significantly enhances power conversion efficiency to 19.4%, highlighting side-chain manipulation as a key strategy for OSC enhancement. image
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Sequential deposition enables high-performance nonfullerene organic solar cells
    Li, Miaomiao
    Wang, Qi
    Liu, Junwei
    Geng, Yanhou
    Ye, Long
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (13) : 4851 - 4873
  • [42] Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells
    Gao, Wei
    Wu, Fei
    Liu, Tao
    Zhang, Guangye
    Chen, Zhanxiang
    Zhong, Cheng
    Zhu, Linna
    Liu, Feng
    Yan, He
    Yang, Chuluo
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (05) : 2412 - 2420
  • [43] High-Performance Nonfullerene Organic Solar Cells with Unusual Inverted Structure
    Xue, Peiyao
    Dai, Shuixing
    Lau, Tsz-Ki
    Yu, Jinde
    Zhou, Jiadong
    Xiao, Yiqun
    Meng, Kaixin
    Xie, Zengqi
    Lu, Guanghao
    Lu, Xinhui
    Han, Ray P. S.
    Zhan, Xiaowei
    SOLAR RRL, 2020, 4 (07)
  • [44] Interpretable machine learning for developing high-performance organic solar cells
    Abadi, Elyas Abbasi Jannat
    Sahu, Harikrishna
    Javadpour, Seyed Morteza
    Goharimanesh, Masoud
    MATERIALS TODAY ENERGY, 2022, 25
  • [45] Detection and role of trace impurities in high-performance organic solar cells
    Nikiforov, Maxim P.
    Lai, Barry
    Chen, Wei
    Chen, Si
    Schaller, Richard D.
    Strzalka, Joseph
    Maser, Joerg
    Darling, Seth B.
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) : 1513 - 1520
  • [46] Recent advances of polymer acceptors for high-performance organic solar cells
    Zhao, Congcong
    Wang, Jiuxing
    Jiao, Jiqing
    Huang, Linjun
    Tang, Jianguo
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (01) : 28 - 43
  • [47] High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells
    Chang, Jeong Ah
    Rhee, Jae Hui
    Im, Sang Hyuk
    Lee, Yong Hui
    Kim, Hi-jung
    Seok, Sang Il
    Nazeeruddin, Md K.
    Gratzel, Michael
    NANO LETTERS, 2010, 10 (07) : 2609 - 2612
  • [48] Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells
    Cai, Molang
    Ishida, Nobuyuki
    Li, Xing
    Yang, Xudong
    Noda, Takeshi
    Wu, Yongzhen
    Xie, Fengxian
    Naito, Hiroyoshi
    Fujita, Daisuke
    Han, Liyuan
    JOULE, 2018, 2 (02) : 296 - 306
  • [49] Impact of Nanoscale Elemental Distribution in High-Performance Kesterite Solar Cells
    Sardashti, Kasra
    Haight, Richard
    Gokmen, Tayfun
    Wang, Wei
    Chang, Liang-Yi
    Mitzi, David B.
    Kummel, Andrew C.
    ADVANCED ENERGY MATERIALS, 2015, 5 (10)
  • [50] Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
    Nielsen, Christian B.
    Giovannitti, Alexander
    Sbircea, Dan-Tiberiu
    Bandiello, Enrico
    Niazi, Muhammad R.
    Hanifi, David A.
    Sessolo, Michele
    Amassian, Aram
    Malliaras, George G.
    Rivnay, Jonathan
    McCulloch, Iain
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (32) : 10252 - 10259