Excited-state dynamics of deuterated indigo

被引:4
|
作者
Cohen, Trevor [1 ]
Svadlenak, Nathan [1 ]
Smith, Charles [1 ]
Vo, Krystal [1 ]
Lee, Si-Young [1 ]
Parejo-Vidal, Ana [1 ]
Kincaid, Joseph R. A. [1 ]
Sobolewski, Andrzej L. [2 ]
Rode, Michal F. [2 ]
de Vries, Mattanjah S. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[2] Polish Acad Sci, Inst Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
来源
EUROPEAN PHYSICAL JOURNAL D | 2023年 / 77卷 / 09期
基金
美国国家科学基金会;
关键词
PROTON-TRANSFER; APPROXIMATION; PHASE;
D O I
10.1140/epjd/s10053-023-00744-z
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Indigo, a rich blue dye, is an incredibly photostable molecule that has survived in ancient art for centuries. It is also unique in that it can undergo both an excited-state hydrogen and proton transfer on the picosecond timescale followed by a ground-state back transfer. Previously, we performed gas phase excited-state lifetime studies on indigo to study these processes in a solvent-free environment, combined with excited-state calculations. We found two decay pathways, a fast sub-nanosecond decay and a slow decay on the order of 10 ns. Calculations of the excited-state potential energy surface found that both hydrogen and proton transfer are nearly isoenergetic separated by a 0.1 eV barrier. To further elucidate these dynamics, we now report a study with deuterated indigo, using resonance-enhanced multi-photon ionization and pump-probe spectroscopy with mass spectrometric isotopomer selection. From new calculations of the excited-state potential energy surface, we find sequential double-proton or hydrogen transfer, whereby the trajectory to the second transfer passes a second barrier and then encounters a conical intersection that leads back to the ground state. We find that deuteration only increases the excited-state lifetimes of the fast decay channel, suggesting tunneling through the first barrier, while the slower channel is not affected and may involve a different intermediate state.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Excited-State Dynamics of Oxyluciferin in Firefly Luciferase
    Snellenburg, Joris J.
    Laptenok, Sergey P.
    DeSa, Richard J.
    Naumov, Pance
    Solntsev, Kyril M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (50) : 16252 - 16258
  • [42] Excited-State Dynamics in Colloidal Semiconductor Nanocrystals
    Freddy T. Rabouw
    Celso de Mello Donega
    Topics in Current Chemistry, 2016, 374
  • [43] Optimal control of peridinin excited-state dynamics
    Dietzek, Benjamin
    Chabera, Pavel
    Hanf, Robert
    Tschierlei, Stefanie
    Popp, Juergen
    Pascher, Torbjorn
    Yartsev, Arkady
    Polivka, Tomas
    CHEMICAL PHYSICS, 2010, 373 (1-2) : 129 - 136
  • [44] Excited-State Dynamics in Colloidal Semiconductor Nanocrystals
    Rabouw, Freddy T.
    Donega, Celso de Mello
    TOPICS IN CURRENT CHEMISTRY, 2016, 374 (05)
  • [45] Polarizable QM/MM for excited-state dynamics
    Glover, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [46] Nonadiabatic Excited-State Dynamics with Machine Learning
    Dral, Pavlo O.
    Barbatti, Mario
    Thiel, Walter
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (19): : 5660 - 5663
  • [47] Deconstructing the Excited-State Dynamics of β-Carotene in Solution
    Jailaubekov, Askat E.
    Vengris, Mikas
    Song, Sang-Hun
    Kusumoto, Toshiyuki
    Hashimoto, Hideki
    Larsen, Delmar S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (16): : 3905 - 3916
  • [48] Deep Learning for Nonadiabatic Excited-State Dynamics
    Chen, Wen-Kai
    Liu, Xiang-Yang
    Fang, Wei-Hai
    Dral, Pavlo O.
    Cui, Ganglong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (23): : 6702 - 6708
  • [49] Excited-state dynamics of mPlum fluorescent protein
    Faraji, Shirin
    Krylov, Anna
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [50] Dynamics of excited-state absorbers: an analytical approach
    Kobyakov, A.
    Hagan, D.J.
    Van Stryland, E.W.
    Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series, 2000, : 48 - 49