Projection-based coupled tensor learning for robust multi-view clustering

被引:5
|
作者
Li, Jinghao [1 ]
Zhang, Xiaoqian [1 ,3 ]
Wang, Jing [1 ]
Wang, Xiao [1 ]
Tan, Zhen [1 ]
Sun, Huaijiang [2 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[3] Southwest Univ Sci & Technol, Tianfu Inst Res & Innovat, Mianyang 621010, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view clustering; Tensor; Embedding space; Projection matrix; LOW-RANK; AFFINITY MATRIX; REPRESENTATION; ALGORITHM;
D O I
10.1016/j.ins.2023.03.072
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-view clustering methods based on tensor learning have received extensive attention due to their ability to effectively mine high-order correlation information between views. However, the presence of noise and redundant information in multi-view data can seriously interfere with the performance of clustering tasks. To this end, we propose a projection-based coupled tensor learning method (PCTL). In particular, we first construct an orthogonal projection matrix to obtain the main characteristic information of the raw data of each view and learn the representation matrix in a clean embedding space. Then, we use tensor learning to couple the projection matrix and the representation matrix to mine the high-order information between views and construct a more suitable and optimal representation of the embedding space. A large number of experiments prove that PCTL can effectively suppress the interference of noise and redundant information, and the clustering performance is better than some existing excellent algorithms.
引用
收藏
页码:664 / 677
页数:14
相关论文
共 50 条
  • [41] Multi-view clustering based on graph learning and view diversity learning
    Lin Wang
    Dong Sun
    Zhu Yuan
    Qingwei Gao
    Yixiang Lu
    The Visual Computer, 2023, 39 : 6133 - 6149
  • [42] Collaborative Embedding Learning via Tensor Integration for Multi-View Clustering
    Zhang, Yue
    Sun, Xin
    Cai, Hongmin
    Wang, Haiyan
    Chen, Jiazhou
    Guo, Endai
    Qi, Fei
    Li, Junyu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1841 - 1852
  • [43] Multi-view clustering based on graph learning and view diversity learning
    Wang, Lin
    Sun, Dong
    Yuan, Zhu
    Gao, Qingwei
    Lu, Yixiang
    VISUAL COMPUTER, 2023, 39 (12): : 6133 - 6149
  • [44] Specific and coupled double consistency multi-view subspace clustering with low-rank tensor learning
    Wu, Tong
    Lu, Gui-Fu
    SIGNAL PROCESSING, 2025, 229
  • [45] Projection-based registration using a multi-view camera for indoor scene reconstruction
    Kim, S
    Woo, W
    FIFTH INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING, PROCEEDINGS, 2005, : 484 - 491
  • [46] Uniform Projection for Multi-View Learning
    Zhang, Zhenyue
    Zhai, Zheng
    Li, Limin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) : 1675 - 1689
  • [47] Unbalanced incomplete multi-view clustering based on low-rank tensor graph learning
    Ji, Guangyan
    Lu, Gui-Fu
    Cai, Bing
    Du, Yangfan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [48] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Senhong Wang
    Jiangzhong Cao
    Fangyuan Lei
    Jianjian Jiang
    Qingyun Dai
    Bingo Wing-Kuen Ling
    Applied Intelligence, 2023, 53 : 3687 - 3712
  • [49] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Wang, Senhong
    Cao, Jiangzhong
    Lei, Fangyuan
    Jiang, Jianjian
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    APPLIED INTELLIGENCE, 2023, 53 (04) : 3687 - 3712
  • [50] Image annotation based on multi-view robust spectral clustering
    Zamiri, Mona
    Yazdi, Hadi Sadoghi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 74