A data-driven approach to predicting consumer preferences for product customization

被引:2
|
作者
Powell, Carter [1 ]
Zhu, Enshen [1 ]
Xiong, Yi [2 ]
Yang, Sheng [1 ]
机构
[1] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
[2] Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Product customization; Product design; Consumer preferences; Data -driven design; Machine learning; ChatGPT; MASS CUSTOMIZATION; DESIGN; SELECTION; PAY;
D O I
10.1016/j.aei.2023.102321
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Product customization is a complex task that relies heavily on consumer preferences. Eliciting these preferences can be challenging for firms looking to develop novel products and require significant investments of both time and effort. Prediction models can serve to replace traditional methods of understanding consumer preferences such as elicitation, focus groups or the designer's intuition, while speeding up the production cycle and saving cost. Current prediction models generally focus on one specific product type and require large amounts of data or historical product data. The idea of predicting consumer preferences for products based on the product type and its features using a clustering approach has not been explored in literature. This paper presents a proof-of -concept consumer preference prediction and decision support model based on a data-driven approach to design for product customization. First, consumer preference information is crowdsourced using surveys with 307 individual responses that are collected for a data set of thirty-seven training products and three validation products. Second, clustering techniques are assessed for user-generated clustering variables along with features that are extracted with artificial intelligence (ChatGPT). A threshold metric is proposed to evaluate the accuracy of different clustering algorithms. Third, a recommendation model is developed for customization decisions, and it is validated with three different products with an average accuracy of 70%. Areas for future work to improve the accuracy and expand the scope of the model are discussed including the use of a larger training data set, different machine learning approaches, and the improved use of ChatGPT.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A data-driven approach for predicting printability in metal additive manufacturing processes
    Mycroft, William
    Katzman, Mordechai
    Tammas-Williams, Samuel
    Hernandez-Nava, Everth
    Panoutsos, George
    Todd, Iain
    Kadirkamanathan, Visakan
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (07) : 1769 - 1781
  • [42] A Data-Driven Approach to Understanding and Predicting the Spatiotemporal Availability of Street Parking
    Li, Mingxiao
    Gao, Song
    Liang, Yunlei
    Marks, Joseph
    Kang, Yuhao
    Li, Moyin
    27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, : 536 - 539
  • [43] A Data-Driven Multi-Regime Approach for Predicting Energy Consumption
    Kahraman, Abdulgani
    Kantardzic, Mehmed
    Kahraman, Muhammet Mustafa
    Kotan, Muhammed
    ENERGIES, 2021, 14 (20)
  • [44] A Novel Data-Driven Approach for Predicting the Performance Degradation of a Gas Turbine
    Dai, Shun
    Zhang, Xiaoyi
    Luo, Mingyu
    ENERGIES, 2024, 17 (04)
  • [45] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    Dinh, An
    Miertschin, Stacey
    Young, Amber
    Mohanty, Somya D.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [46] A Data-Driven Approach for Predicting the Remaining Useful Life of Steam Generators
    Hoang-Phuong Nguyen
    Fauriat, William
    Zio, Enrico
    Liu, Jie
    2018 3RD INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS), 2018, : 255 - 260
  • [47] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    An Dinh
    Stacey Miertschin
    Amber Young
    Somya D. Mohanty
    BMC Medical Informatics and Decision Making, 19
  • [48] A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit
    Yee, Christopher R.
    Narain, Niven R.
    Akmaev, Viatcheslav R.
    Vemulapalli, Vijetha
    BIOMEDICAL INFORMATICS INSIGHTS, 2019, 11
  • [49] Data-Driven Pricing for a New Product
    Zhang, Mengzhenyu
    Ahn, Hyun-Soo
    Uichanco, Joline
    OPERATIONS RESEARCH, 2022, 70 (02) : 847 - 866
  • [50] Acquiring user preferences for product customization
    Chin, DN
    Porage, A
    USER MODELING 2001, PROCEEDINGS, 2001, 2109 : 95 - 104