A data-driven approach to predicting consumer preferences for product customization

被引:2
|
作者
Powell, Carter [1 ]
Zhu, Enshen [1 ]
Xiong, Yi [2 ]
Yang, Sheng [1 ]
机构
[1] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
[2] Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Product customization; Product design; Consumer preferences; Data -driven design; Machine learning; ChatGPT; MASS CUSTOMIZATION; DESIGN; SELECTION; PAY;
D O I
10.1016/j.aei.2023.102321
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Product customization is a complex task that relies heavily on consumer preferences. Eliciting these preferences can be challenging for firms looking to develop novel products and require significant investments of both time and effort. Prediction models can serve to replace traditional methods of understanding consumer preferences such as elicitation, focus groups or the designer's intuition, while speeding up the production cycle and saving cost. Current prediction models generally focus on one specific product type and require large amounts of data or historical product data. The idea of predicting consumer preferences for products based on the product type and its features using a clustering approach has not been explored in literature. This paper presents a proof-of -concept consumer preference prediction and decision support model based on a data-driven approach to design for product customization. First, consumer preference information is crowdsourced using surveys with 307 individual responses that are collected for a data set of thirty-seven training products and three validation products. Second, clustering techniques are assessed for user-generated clustering variables along with features that are extracted with artificial intelligence (ChatGPT). A threshold metric is proposed to evaluate the accuracy of different clustering algorithms. Third, a recommendation model is developed for customization decisions, and it is validated with three different products with an average accuracy of 70%. Areas for future work to improve the accuracy and expand the scope of the model are discussed including the use of a larger training data set, different machine learning approaches, and the improved use of ChatGPT.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Data-driven optimization model customization
    Hewitt, Mike
    Frejinger, Emma
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (02) : 438 - 451
  • [2] A data-driven approach for the optimisation of product specifications
    Zhang, Lei
    Chu, Xuening
    Chen, Hansi
    Yan, Bo
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2019, 57 (03) : 703 - 721
  • [3] Automatic User Preferences Elicitation: A Data-Driven Approach
    Li, Tong
    Zhang, Fan
    Wang, Dan
    REQUIREMENTS ENGINEERING: FOUNDATION FOR SOFTWARE QUALITY (REFSQ 2018), 2018, 10753 : 324 - 331
  • [4] Data-Driven Customization of Object Lifecycle Processes
    Breitmayer, Marius
    Arnold, Lisa
    Reichert, Manfred
    2023 IEEE 25TH CONFERENCE ON BUSINESS INFORMATICS, CBI, 2023, : 77 - 86
  • [5] Predicting the evolution of Escherichia coli by a data-driven approach
    Wang, Xiaokang
    Zorraquino, Violeta
    Kim, Minseung
    Tsoukalas, Athanasios
    Tagkopoulos, Ilias
    NATURE COMMUNICATIONS, 2018, 9
  • [6] A Data-Driven Approach for Improving Sustainable Product Development
    Relich, Marcin
    SUSTAINABILITY, 2023, 15 (08)
  • [7] Predicting heterogeneous ice nucleation with a data-driven approach
    Fitzner, Martin
    Pedevilla, Philipp
    Michaelides, Angelos
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Multiple data-driven approach for predicting landslide deformation
    Li, S. H.
    Wu, L. Z.
    Chen, J. J.
    Huang, R. Q.
    LANDSLIDES, 2020, 17 (03) : 709 - 718
  • [9] Predicting the evolution of Escherichia coli by a data-driven approach
    Xiaokang Wang
    Violeta Zorraquino
    Minseung Kim
    Athanasios Tsoukalas
    Ilias Tagkopoulos
    Nature Communications, 9
  • [10] Data-driven product ranking: A hybrid ranking approach
    Geng, Ruijuan
    Ji, Ying
    Qu, Shaojian
    Wang, Zheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 6573 - 6592