Macroscopic dynamics of neural networks with heterogeneous spiking thresholds

被引:10
|
作者
Gast, Richard [1 ]
Solla, Sara A. [1 ]
Kennedy, Ann [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Dept Neurosci, Chicago, IL 60611 USA
关键词
MODEL; INHIBITION;
D O I
10.1103/PhysRevE.107.024306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Mean-field theory links the physiological properties of individual neurons to the emergent dynamics of neural population activity. These models provide an essential tool for studying brain function at different scales; however, for their application to neural populations on large scale, they need to account for differences between distinct neuron types. The Izhikevich single neuron model can account for a broad range of different neuron types and spiking patterns, thus rendering it an optimal candidate for a mean-field theoretic treatment of brain dynamics in heterogeneous networks. Here we derive the mean-field equations for networks of all-to-all coupled Izhikevich neurons with heterogeneous spiking thresholds. Using methods from bifurcation theory, we examine the conditions under which the mean-field theory accurately predicts the dynamics of the Izhikevich neuron network. To this end, we focus on three important features of the Izhikevich model that are subject here to simplifying assumptions: (i) spike-frequency adaptation, (ii) the spike reset conditions, and (iii) the distribution of single-cell spike thresholds across neurons. Our results indicate that, while the mean-field model is not an exact model of the Izhikevich network dynamics, it faithfully captures its different dynamic regimes and phase transitions. We thus present a mean-field model that can represent different neuron types and spiking dynamics. The model comprises biophysical state variables and parameters, incorporates realistic spike resetting conditions, and accounts for heterogeneity in neural spiking thresholds. These features allow for a broad applicability of the model as well as for a direct comparison to experimental data.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Neural dynamics in cortical networks -: precision of joint-spiking events
    Aertsen, A
    Diesmann, M
    Gewaltig, MO
    Grün, S
    Rotter, S
    COMPLEXITY IN BIOLOGICAL INFORMATION PROCESSING, 2001, 239 : 193 - 207
  • [32] Synchrony in heterogeneous networks of spiking neurons
    Neltner, L
    Hansel, D
    Mato, G
    Meunier, C
    NEURAL COMPUTATION, 2000, 12 (07) : 1607 - 1641
  • [33] Attention Spiking Neural Networks
    Yao, Man
    Zhao, Guangshe
    Zhang, Hengyu
    Hu, Yifan
    Deng, Lei
    Tian, Yonghong
    Xu, Bo
    Li, Guoqi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9393 - 9410
  • [34] Simulation of spiking neural networks
    Bako, Laszlo
    Szekely, Iuliu
    David, Laszlo
    Brassai, Tihamer Sandor
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL III: INDUSTRIAL AUTOMATION AND CONTROL, 2004, : 179 - 184
  • [35] Agreement in Spiking Neural Networks
    Kunev, Martin
    Kuznetsov, Petr
    Sheynikhovich, Denis
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (04) : 358 - 369
  • [36] A Survey on Spiking Neural Networks
    Han, Chan Sik
    Lee, Keon Myung
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2021, 21 (04) : 317 - 337
  • [37] Applications of spiking neural networks
    Bohte, SM
    Kok, JN
    INFORMATION PROCESSING LETTERS, 2005, 95 (06) : 519 - 520
  • [38] Designing Spiking Neural Networks
    Dorogyy, Yaroslav
    Kolisnichenko, Vadym
    2016 13TH INTERNATIONAL CONFERENCE ON MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE (TCSET), 2016, : 124 - 127
  • [39] Spiking Neural Networks: A Survey
    Nunes, Joao D.
    Carvalho, Marcelo
    Carneiro, Diogo
    Cardoso, Jaime S.
    IEEE ACCESS, 2022, 10 : 60738 - 60764
  • [40] Encountering Spiking Neural Networks
    Saunier, Alexandre
    Howes, David
    VISUAL ANTHROPOLOGY REVIEW, 2023, 39 (02) : 476 - 495