Catalytic upgrading of bio-oil model mixtures in the presence of microporous HZSM-5 and γ-Al2O3 based Ni, Ta and Zr catalysts

被引:7
|
作者
Guvenc, Can [1 ]
Alan, Enez [1 ]
Degirmencioglu, Pinar [1 ]
Ozcan, Merve Celik [1 ]
Karaman, Birce Pekmezci [1 ]
Oktar, Nuray [1 ]
机构
[1] Gazi Univ, Dept Chem Engn, Ankara, Turkiye
关键词
Mesoporous alumina; Bio-fuel; Bio-oil; Gasoline; Isoparaffin; Br onsted acidity; BIOMASS PYROLYSIS OIL; CO-CRACKING; ACETIC-ACID; GASOLINE; ZEOLITE; HYDROGENATION; PERFORMANCE; FRACTION;
D O I
10.1016/j.fuel.2023.128870
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bio-fuel production from bio-oil was investigated in the presence of microporous HZSM-5 and Al2O3 (MA) based catalysts. This study focused on the catalytic upgrading of a model bio-oil compound with ethanol for bio-fuel production. The model compound containing hydroxypropanol/furfural/formic acid: 4/6.5/5 by volume was used as a bio-oil mixture. Activity tests were performed under atmospheric pressure with a volumetric feed ratio of 30/70 bio-oil mixture/ethanol using a 0.5 g catalyst. In the reaction studies performed on the commercial microporous HZSM-5 catalyst, the optimum co-cracking temperature was determined as 400 degrees C. Mesoporous & gamma;-Al2O3 support was synthesized by the evaporation-induced self-assembly (EISA) synthesis method, and Ni, Ta, and Zr metals were incorporated into the structure of the catalyst by the impregnation method to improve the surface acidity. The synthesized catalysts were characterized by X-ray diffraction (XRD), X-ray absorption near edge spectroscopy (XANES), N2 adsorption-desorption, scanning electron microscopy energy dispersive spectroscopy (SEM/EDS), X-ray fluorescence (XRF), Fourier-transformed infrared spectroscopy (FTIR), pyridine adsorbed diffuse reflectance FTIR spectroscopy (DRIFTS), and thermogravimetric/differential thermal analysis (TGA-DTA). Monometallic and pure alumina catalysts indicated an ordered mesoporous structure with surface area values 106-389 m2/g. Lewis and Bronsted acid sites associated with mild acidity were observed in the DRIFTS results of the 10 wt% Zr-containing alumina catalyst (10Zr@MA). The highest oil phase selectivity and isoparaffin selectivity in oil phase values were obtained in the presence of 10Zr@MA as 17.22% and 80.96%, respectively. 10Zr@MA catalyst showed the best catalytic activity compared to other catalysts, with 9.54% coke formation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Upgrading of Light Bio-oil from Solvothermolysis Liquefaction of an Oil Palm Empty Fruit Bunch in Glycerol by Catalytic Hydrodeoxygenation Using NiMo/Al2O3 or CoMo/Al2O3 Catalysts
    Muangsuwan, Chutanan
    Kriprasertkul, Warangthat
    Ratchahat, Sakhon
    Liu, Chen-Guang
    Posoknistakul, Pattaraporn
    Laosiripojana, Navadol
    Sakdaronnarong, Chularat
    ACS OMEGA, 2021, 6 (04): : 2999 - 3016
  • [22] Impact of HZSM-5 supported Fe, Ni, and Mo catalysts on microcrystalline cellulose liquefied bio-oil composition
    Deng, Gui-zhong
    Tang, Xiao-dong
    Li, Jing-jing
    Ma, Xin-jun
    Yang, Zhi
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 177
  • [23] Catalytic Upgrading of Bio-oil over Ni-Based Catalysts Supported on Mixed Oxides
    Zhang, Xinghua
    Long, Jinxing
    Kong, Wei
    Zhang, Qi
    Chen, Luangang
    Wang, Tiejun
    Ma, Longlong
    Li, Yuping
    ENERGY & FUELS, 2014, 28 (04) : 2562 - 2570
  • [24] In-situ catalytic upgrading of bio-oil from rapid pyrolysis of biomass over hollow HZSM-5 with mesoporous shell
    Chaihad, Nichaboon
    Anniwaer, Aisikaer
    Zahra, Aghietyas Choirun Az
    Kasai, Yutaka
    Reubroycharoen, Prasert
    Kusakabe, Katsuki
    Abudula, Abuliti
    Guan, Guoqing
    BIORESOURCE TECHNOLOGY, 2021, 341
  • [25] In-situ catalytic upgrading of bio-oil from rapid pyrolysis of biomass over hollow HZSM-5 with mesoporous shell
    Chaihad, Nichaboon
    Anniwaer, Aisikaer
    Choirun Az Zahra, Aghietyas
    Kasai, Yutaka
    Reubroycharoen, Prasert
    Kusakabe, Katsuki
    Abudula, Abuliti
    Guan, Guoqing
    Bioresource Technology, 2021, 341
  • [26] Co and Cu modified Ni/Al2O3 steam reforming catalysts for hydrogen production from model bio-oil
    Xie, Deng-Yin
    Zhang, Su-Ping
    Chen, Zhi-Yuan
    Chen, Zhen-Qi
    Xu, Qing-Li
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2015, 43 (03): : 302 - 308
  • [27] Catalytic Hydroprocessing of Furfural to Cyclopentanol Over Ni/CNTs Catalysts: Model Reaction for Upgrading of Bio-oil
    Minghao Zhou
    Hongyan Zhu
    Lei Niu
    Guomin Xiao
    Rui Xiao
    Catalysis Letters, 2014, 144 : 235 - 241
  • [28] Catalytic Hydroprocessing of Furfural to Cyclopentanol Over Ni/CNTs Catalysts: Model Reaction for Upgrading of Bio-oil
    Zhou, Minghao
    Zhu, Hongyan
    Niu, Lei
    Xiao, Guomin
    Xiao, Rui
    CATALYSIS LETTERS, 2014, 144 (02) : 235 - 241
  • [29] Catalytic bio-oil upgrading using Fe-Co/Al2O3 and co-processing with vacuum gas oil
    Saini, Nand Kishore
    Chakinala, Nandana
    Majumder, Supriyo
    Maity, Pintu
    Thota, Chiranjeevi
    Chakinala, Anand G.
    CATALYSIS COMMUNICATIONS, 2024, 187
  • [30] Hydrogen production by steam reforming of acetic acid and bio-oil using Ni/γ-Al2O3 catalysts
    Li Yanmei
    Fu Peng
    Yi Weiming
    Bai Xueyuan
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2015, 8 (06) : 69 - 76