Classification and staging of Parkinson's disease using video-based eye tracking

被引:22
|
作者
Brien, Donald C. [1 ]
Riek, Heidi C. [1 ]
Yep, Rachel [1 ]
Huang, Jeff [1 ]
Coe, Brian [1 ]
Areshenkoff, Corson [1 ]
Grimes, David [3 ]
Jog, Mandar [4 ]
Lang, Anthony [5 ,6 ]
Marras, Connie [7 ,8 ]
Masellis, Mario [9 ]
McLaughlin, Paula [1 ,10 ,11 ]
Peltsch, Alicia [12 ]
Roberts, Angela [13 ]
Tan, Brian [14 ]
Beaton, Derek [15 ]
Lou, Wendy [16 ]
Swartz, Richard [17 ,18 ]
Munoz, Douglas P. [1 ,2 ]
机构
[1] Queens Univ, Ctr Neurosci Studies, Rm 238 Botterell Hall, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON, Canada
[3] Ottawa Hosp, uOttawa Brain & Mind Res Inst, Ottawa, ON, Canada
[4] Lawson Hlth Res Inst, London Movement Disorders Ctr, PF Ctr Excellence, London, ON, Canada
[5] Univ Hlth Network, Edmond J Safra Program Parkinsons Dis, Toronto, ON, Canada
[6] Univ Toronto, Dept Med, Div Neurol, Toronto, ON, Canada
[7] Univ Toronto, Toronto Western Hosp Movement Disorders Ctr, Toronto, ON, Canada
[8] Univ Toronto, Edmond J Safra Program Parkinsons Dis, Toronto, ON, Canada
[9] Sunnybrook Hlth Sci Ctr, Med Neurol, Toronto, ON, Canada
[10] Nova Scotia Hlth, Halifax, NS, Canada
[11] Dalhousie Univ, Dept Psychol & Neurosci, Dept Med Geriatr, Halifax, NS, Canada
[12] Queens Univ, Fac Engn & Appl Sci, Kingston, ON, Canada
[13] Univ Western Ontario, Sch Commun Sci & Disorders, Dept Comp Sci, London, ON, Canada
[14] Baycrest Hlth Sci, Rotman Res Inst, Toronto, ON, Canada
[15] Unity Hlth Toronto, St Michaels Hosp, Data Sci & Adv Analyt DSAA, Toronto, ON, Canada
[16] Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada
[17] Univ Toronto, Sunnybrook Hlth Sci Ctr, Hurvitz Brain Sci Program, Toronto, ON, Canada
[18] Univ Toronto, Fac Med, Dept Med Neurol, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
Canada; Saccade; Pupil; Blink; Parkinson 's disease; Machine learning; Classification; Dementia; Functional data analysis; VISUALLY-GUIDED SACCADES; DEMENTIA; ABNORMALITIES; PROGRESSION; MOTOR; LEWY;
D O I
10.1016/j.parkreldis.2023.105316
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Introduction: 83% of those diagnosed with Parkinson's Disease (PD) eventually progress to PD with mild cognitive impairment (PD-MCI) followed by dementia (PDD) - suggesting a complex spectrum of pathology concomitant with aging. Biomarkers sensitive and specific to this spectrum are required if useful diagnostics are to be developed that may supplement current clinical testing procedures. We used video-based eye tracking and machine learning to develop a simple, non-invasive test sensitive to PD and the stages of cognitive dysfunction. Methods: From 121 PD (45 Cognitively Normal/45 MCI/20 Dementia/11 Other) and 106 healthy controls, we collected video-based eye tracking data on an interleaved pro/anti-saccade task. Features of saccade, pupil, and blink behavior were used to train a classifier to predict confidence scores for PD/PD-MCI/PDD diagnosis. Results: The Receiver Operator Characteristic Area Under the Curve (ROC-AUC) of the classifier was 0.88, with the cognitive-dysfunction subgroups showing progressively increased AUC, and the AUC of PDD being 0.95. The classifier reached a sensitivity of 83% and a specificity of 78%. The confidence scores predicted PD motor and cognitive performance scores. Conclusion: Biomarkers of saccade, pupil, and blink were extracted from video-based eye tracking to create a classifier with high sensitivity to the landscape of PD cognitive and motor dysfunction. A complex landscape of
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Feasibility of video-based motion analysis to rate the severity of tremor and bradykinesia in Parkinson's disease
    Park, K. W.
    Jo, S. Y.
    Lee, E. J.
    Kang, D. W.
    Lee, J. G.
    Lee, J. S.
    Chung, J. H.
    Chung, S. J.
    MOVEMENT DISORDERS, 2020, 35 : S581 - S581
  • [42] Remote video-based research visits in a phase 3 clinical trial in Parkinson's disease
    Tarolli, C.
    Andrzejewski, K.
    Zimmerman, G.
    Bull, M.
    Goldenthal, S.
    Auinger, P.
    Dorsey, E. R.
    Biglan, K.
    Simuni, T.
    MOVEMENT DISORDERS, 2020, 35 : S426 - S426
  • [43] Automated video-based assessment of facial bradykinesia in de-novo Parkinson’s disease
    Michal Novotny
    Tereza Tykalova
    Hana Ruzickova
    Evzen Ruzicka
    Petr Dusek
    Jan Rusz
    npj Digital Medicine, 5
  • [44] Video-Based Quantification of Gait Impairments in Parkinson's Disease Using Skeleton-Silhouette Fusion Convolution Network
    Zeng, Qingyi
    Liu, Peipei
    Yu, Ningbo
    Wu, Jialing
    Huo, Weiguang
    Han, Jianda
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 2912 - 2922
  • [45] A New Era: The Growth of Video-Based Visits for Remote Management of Persons with Parkinson's Disease
    Larson, Danielle N.
    Schneider, Ruth B.
    Simuni, Tanya
    JOURNAL OF PARKINSONS DISEASE, 2021, 11 : S27 - S34
  • [46] Automated video-based assessment of facial bradykinesia in de-novo Parkinson's disease
    Novotny, Michal
    Tykalova, Tereza
    Ruzickova, Hana
    Ruzicka, Evzen
    Dusek, Petr
    Rusz, Jan
    NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [47] Video-Based Vehicle Detection and Tracking Using Spatiotemporal Maps
    Malinovskiy, Yegor
    Wu, Yao-Jan
    Wang, Yinhai
    TRANSPORTATION RESEARCH RECORD, 2009, (2121) : 81 - 89
  • [48] Estimating Self-Confidence in Video-Based Learning Using Eye-Tracking and Deep Neural Networks
    Bhatt, Ankur
    Watanabe, Ko
    Santhosh, Jayasankar
    Dengel, Andreas
    Ishimaru, Shoya
    IEEE ACCESS, 2024, 12 : 192219 - 192229
  • [49] A REAL-TIME VIDEO-BASED EYE TRACKING APPROACH FOR DRIVER ATTENTION STUDY
    Fu, Xianping
    Zang, Ying
    Liu, Hongbo
    COMPUTING AND INFORMATICS, 2012, 31 (04) : 805 - 825
  • [50] Video-Based Head Movement Compensation for Novel Haploscopic Eye-Tracking Apparatus
    Irsch, Kristina
    Ramey, Nicholas A.
    Kurz, Anton
    Guyton, David L.
    Ying, Howard S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2009, 50 (03) : 1152 - 1157