We show that there is an operator space notion of Lipschitz embeddability between operator spaces which is strictly weaker than its linear counterpart but which is still strong enough to impose linear restrictions on operator space structures. This shows that there is a nontrivial theory of nonlinear geometry for operator spaces and it answers a question in Braga et al. (Proc Am Math Soc 149(3):1139-1149, 2021). For that, we introduce the operator space version of Lipschitz-free Banach spaces and prove several properties of it. In particular, we show that separable operator spaces satisfy a sort of isometric Lipschitz-lifting property in the sense of Godefroy and Kalton. Gateaux differentiability of Lipschitz maps in the operator space category is also studied.
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech Republic
Cuth, Marek
Doucha, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Czech Acad Sci, Inst Math, Prague, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech Republic
Doucha, Michal
Titkos, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Corvinus Univ Budapest, Dept Math, Budapest, Hungary
HUN REN Alfred Reny Inst Math, Budapest, HungaryCharles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech Republic
Titkos, Tamas
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES,
2024,
110
(05):
机构:
Univ Paris 06, Inst Math Jussieu, Projet Anal Fonct, F-75252 Paris 05, FranceUniv Paris 06, Inst Math Jussieu, Projet Anal Fonct, F-75252 Paris 05, France
机构:
Univ Fed Sao Paulo, Inst Ciencia Tecnol, BR-12247016 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia Tecnol, BR-12247016 Sao Jose Dos Campos, SP, Brazil
机构:
Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, Brazil
Candido, Leandro
Kaufmann, Pedro L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, BrazilUniv Fed Sao Paulo, Inst Ciencia & Tecnol, Av Cesare Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos, SP, Brazil