An Interventional Radiologist's Primer of Critical Appraisal of Artificial Intelligence Research

被引:0
|
作者
Gaddum, Olivia [1 ]
Chapiro, Julius [1 ,2 ]
机构
[1] Yale Univ, Dept Radiol & Biomed Imaging, Div Intervent Radiol, Sch Med, New Haven, CT USA
[2] Yale Univ, Dept Radiol & Biomed Imaging, Div Intervent Radiol, Sch Med, 333 Cedar St, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
MACHINE; PERFORMANCE; ACCURACY; CARE;
D O I
10.1016/j.jvir.2023.09.020
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advances in artificial intelligence (AI) are expected to cause a significant paradigm shift in all digital data-driven aspects of information gain, processing, and decision making in both clinical healthcare and medical research. The field of interventional radiology (IR) will be enmeshed in this innovation, yet the collective IR expertise in the field of AI remains rudimentary because of lack of training. This primer provides the clinical interventional radiologist with a simple guide for critically appraising AI research and products by identifying 12 fundamental items that should be considered: (a) need for AI technology to address the clinical problem, (b) type of applied Al algorithm, (c) data quality and degree of annotation, (d) reporting of accuracy, (e) applicability of standardized reporting, (f) reproducibility of methodology and data transparency, (g) algorithm validation, (h) interpretability, (i) concrete impact on IR, (j) pathway toward translation to clinical practice, (k) clinical benefit and cost-effectiveness, and (l) regulatory framework.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 50 条
  • [31] Artificial Intelligence in Interventional Radiology
    Kallini, Joseph R.
    Moriarty, John M.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2022, 39 (03) : 341 - 347
  • [32] Artificial intelligence in logistics and supply chain management: A primer and roadmap for research
    Richey Jr, Robert Glenn
    Chowdhury, Soumyadeb
    Davis-Sramek, Beth
    Giannakis, Mihalis
    Dwivedi, Yogesh K.
    JOURNAL OF BUSINESS LOGISTICS, 2023, 44 (04) : 532 - 549
  • [33] Health Services Research: A Review for the Interventional Radiologist
    Marchak, Katherine
    Malavia, Mira
    Trivedi, Premal S.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2023, 40 (05) : 452 - 460
  • [34] Translation of Artificial Intelligence Into Practice: The Radiologist as a Vendor
    Rothenberg, Steven
    Gupta, Sonia
    Boonn, William
    Kim, Woojin
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2023, 20 (09) : 875 - 876
  • [35] The augmented radiologist: artificial intelligence in the practice of radiology
    Erich Sorantin
    Michael G. Grasser
    Ariane Hemmelmayr
    Sebastian Tschauner
    Franko Hrzic
    Veronika Weiss
    Jana Lacekova
    Andreas Holzinger
    Pediatric Radiology, 2022, 52 : 2074 - 2086
  • [36] Artificial intelligence: a challenge for third millennium radiologist
    Roberto Grassi
    Vittorio Miele
    Andrea Giovagnoni
    La radiologia medica, 2019, 124 : 241 - 242
  • [37] The concept of the invisible radiologist in the era of artificial intelligence
    Karantanas, Apostolos H.
    Efremidis, Stavros
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 155
  • [38] Artificial intelligence: a challenge for third millennium radiologist
    Grassi, Roberto
    Miele, Vittorio
    Giovagnoni, Andrea
    RADIOLOGIA MEDICA, 2019, 124 (04): : 241 - 242
  • [39] The augmented radiologist: artificial intelligence in the practice of radiology
    Sorantin, Erich
    Grasser, Michael G.
    Hemmelmayr, Ariane
    Tschauner, Sebastian
    Hrzic, Franko
    Weiss, Veronika
    Lacekova, Jana
    Holzinger, Andreas
    PEDIATRIC RADIOLOGY, 2022, 52 (11) : 2074 - 2086
  • [40] A practitioner's guide to developing critical appraisal skills Interventional studies
    Barnett, Michael L.
    Pihlstrom, Bruce Lee
    JOURNAL OF THE AMERICAN DENTAL ASSOCIATION, 2012, 143 (10): : 1114 - 1119