An Interventional Radiologist's Primer of Critical Appraisal of Artificial Intelligence Research

被引:0
|
作者
Gaddum, Olivia [1 ]
Chapiro, Julius [1 ,2 ]
机构
[1] Yale Univ, Dept Radiol & Biomed Imaging, Div Intervent Radiol, Sch Med, New Haven, CT USA
[2] Yale Univ, Dept Radiol & Biomed Imaging, Div Intervent Radiol, Sch Med, 333 Cedar St, New Haven, CT 06510 USA
基金
美国国家卫生研究院;
关键词
MACHINE; PERFORMANCE; ACCURACY; CARE;
D O I
10.1016/j.jvir.2023.09.020
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advances in artificial intelligence (AI) are expected to cause a significant paradigm shift in all digital data-driven aspects of information gain, processing, and decision making in both clinical healthcare and medical research. The field of interventional radiology (IR) will be enmeshed in this innovation, yet the collective IR expertise in the field of AI remains rudimentary because of lack of training. This primer provides the clinical interventional radiologist with a simple guide for critically appraising AI research and products by identifying 12 fundamental items that should be considered: (a) need for AI technology to address the clinical problem, (b) type of applied Al algorithm, (c) data quality and degree of annotation, (d) reporting of accuracy, (e) applicability of standardized reporting, (f) reproducibility of methodology and data transparency, (g) algorithm validation, (h) interpretability, (i) concrete impact on IR, (j) pathway toward translation to clinical practice, (k) clinical benefit and cost-effectiveness, and (l) regulatory framework.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 50 条
  • [1] The Role of Artificial Intelligence in Interventional Oncology: A Primer
    Letzen, Brian
    Wang, Clinton J.
    Chapiro, Julius
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2019, 30 (01) : 38 - 41
  • [2] Artificial intelligence terminology, methodology, and critical appraisal: A primer for headache clinicians and researchers
    Dumkrieger, Gina M.
    Chiang, Chia-Chun
    Zhang, Pengfei
    Minen, Mia T.
    Cohen, Fred
    Hranilovich, Jennifer A.
    HEADACHE, 2025, 65 (01): : 180 - 190
  • [3] Artificial Intelligence and the radiologist's role
    Ratnayake, Manusha
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (05) : 495 - 497
  • [4] Artificial Intelligence in the Angio-suite: Will Algorithms be the Copilots of the Interventional Radiologist?
    Barabino, Emanuele
    Tosques, Michele
    Cittadini, Giuseppe
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2024, 47 (06) : 793 - 794
  • [5] Infrared Spectral Microscopy: A Primer for the Interventional Radiologist
    Mohiuddin, Suha
    Sreedhar, Siva
    Sreedhar, Hari
    Martinez, David
    Nazzal, Osayd
    Gaba, Ron C.
    Walsh, Michael J.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2021, 32 (06) : 878 - +
  • [6] Artificial Intelligence in Imaging: The Radiologist's Role
    Rubin, Daniel L.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (09) : 1309 - 1317
  • [7] Critical appraisal of interventional radiology research studies
    Shannon, S
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2002, 53 (03): : 133 - 135
  • [8] Critical appraisal of artificial intelligence in robotic surgery
    Balch, Jeremy A.
    Abbott, Kenneth L.
    Loftus, Tyler J.
    SURGERY, 2024, 176 (03) : 558 - 559
  • [9] A critical appraisal on cancer prognosis and artificial intelligence
    Sarode, Sachin C.
    Sharma, Nilesh Kumar
    Sarode, Gargi
    FUTURE ONCOLOGY, 2022, 18 (13) : 1531 - 1534
  • [10] Artificial intelligence clinical trials and critical appraisal: a necessity
    Kovoor, Joshua G.
    Bacchi, Stephen
    Gupta, Aashray K.
    O'Callaghan, Patrick G.
    Abou-Hamden, Amal
    Maddern, Guy J.
    ANZ JOURNAL OF SURGERY, 2023,