A dual-view network for fault diagnosis in rotating machinery using unbalanced data

被引:7
|
作者
Chen, Zixu [1 ,2 ]
Yu, Wennian [1 ,2 ]
Kong, Chengcheng [1 ,2 ]
Zeng, Qiang [2 ]
Wang, Liming [2 ]
Shao, Yimin [2 ]
机构
[1] Chongqing Univ, Coll Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; unbalanced data; multi-sensor interactive graph; dual-view network;
D O I
10.1088/1361-6501/ace9f0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data-driven intelligent methods have demonstrated their effectiveness in the area of fault diagnosis. However, most existing studies are based on the assumption that the distributions of normal and faulty samples are balanced during the diagnostic process. This assumption significantly decreases the application range of a diagnostic model as the samples in most real-world scenarios are highly unbalanced. To cope with the limitations caused by unbalanced data, this paper proposed an original dual-view network (DVN). Firstly, an interactive graph modeling strategy is introduced for relationship information modeling of multi-sensor data. Meanwhile, the graph convolution operation is used as the baseline for feature extraction of the constructed interactive graph to mine for fault representations. Secondly, an original dual-view classifier consisting of a binary classifier and a multi-class classifier is proposed, which divides fault diagnosis into two stages. Specifically, in the first stage, the binary classifier performs the binary inference from the view of fault detection. In the second stage, the multi-class classifier performs the full-state inference from the view of fine-grained fault classification. Then, based on the dual-view classifier, a weight activation module is designed to alleviate training bias toward majority classes by sample-level re-weighting. Finally, the diagnosis results can be obtained according to the output of the multi-class classifier. Fault diagnosis experiments using two different datasets with varying data unbalance ratios were conducted to validate the effectiveness of the proposed method. The superiority of the proposed DVN is verified through comparisons with state-of-the-art methods. The effectiveness of the DVN is further validated through ablation studies with some ablative models. The DVN code is available at: https:// github.com/CQU-ZixuChen/DualViewNetwork.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Dual-View Style Mixing Network for unsupervised cross-domain fault diagnosis with imbalanced data
    Chen, Zixu
    Yu, Wennian
    Wang, Liming
    Ding, Xiaoxi
    Huang, Wenbin
    Shao, Yimin
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [2] A dual-view alignment-based domain adaptation network for fault diagnosis
    Zhao, Chao
    Liu, Guokai
    Shen, Weiming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (11)
  • [3] Transfer Relation Network for Fault Diagnosis of Rotating Machinery With Small Data
    Lu, Na
    Hu, Huiyang
    Yin, Tao
    Lei, Yaguo
    Wang, Shuhui
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 11927 - 11941
  • [4] MPNet: A lightweight fault diagnosis network for rotating machinery
    Liu, Yi
    Chen, Ying
    Li, Xianguo
    Zhou, Xinyi
    Wu, Dongdong
    MEASUREMENT, 2025, 239
  • [5] Fault diagnosis method of rotating machinery for unlabeled data
    Chen F.
    Yang Z.
    Zhang Z.-C.
    Luo W.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (11): : 2514 - 2522
  • [6] Parallel network using intrinsic component filtering for rotating machinery fault diagnosis
    Han, Baokun
    Liu, Zongling
    Zhang, Zongzhen
    Wang, Jinrui
    Bao, Huaiqian
    Yang, Zujie
    Xing, Shuo
    Jiang, Xingwang
    Li, Bo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [7] Fault diagnosis in rotating machinery
    Lees, A.W.
    Proceedings of the International Modal Analysis Conference - IMAC, 2000, 1 : 313 - 319
  • [8] Fault diagnosis of rotating machinery
    Edwards, S.
    Lees, A.W.
    Friswell, M.I.
    Shock and Vibration Digest, 1998, 30 (01): : 4 - 13
  • [9] Fault diagnosis in rotating machinery
    Lees, AW
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 313 - 319
  • [10] Support tensor machine with dynamic penalty factors and its application to the fault diagnosis of rotating machinery with unbalanced data
    He, Zhiyi
    Shao, Haidong
    Cheng, Junsheng
    Zhao, Xianzhu
    Yang, Yu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 141