Motives of moduli spaces of bundles on curves via variation of stability and flips

被引:2
|
作者
Fu, Lie [1 ,2 ]
Hoskins, Victoria [3 ,5 ]
Lehalleur, Simon Pepin [4 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee IRMA, Strasbourg, France
[2] Univ Strasbourg, Inst Etud Avancees Univ Strasbourg USIAS, Strasbourg, France
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys IMAPP, Nijmegen, Netherlands
[4] Univ Amsterdam, Korteweg de Vries Inst Math KdVI, Amsterdam, Netherlands
[5] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
关键词
VECTOR-BUNDLES; HIGGS BUNDLES; CHOW RING; COHOMOLOGY; RANK-2; RATIONALITY; INVARIANCE; VARIETIES; EQUATIONS; 1-CYCLES;
D O I
10.1112/jlms.12739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulae for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
引用
收藏
页码:1 / 53
页数:53
相关论文
共 50 条
  • [21] Minimal rational curves on the moduli spaces of symplectic and orthogonal bundles
    Choe, Insong
    Chung, Kiryong
    Lee, Sanghyeon
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (01): : 543 - 564
  • [22] ON VECTOR BUNDLES OVER MODULI SPACES TRIVIAL ON HECKE CURVES
    Biswas, Indranil
    Gomez, Tomas L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (09) : 3613 - 3626
  • [23] Remarks on minimal rational curves on moduli spaces ofstable bundles
    Min, Liu
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (10) : 1013 - 1017
  • [24] Degenerations of the moduli spaces of vector bundles on curves .1.
    Nagaraj, DS
    Seshadri, CS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 101 - 137
  • [25] Rationality of moduli spaces of stable bundles on curves over R
    Majumder, Souradeep
    Sebastian, Ronnie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 156
  • [26] Poincaré polynomials of moduli spaces of stable bundles over curves
    Sergey Mozgovoy
    manuscripta mathematica, 2010, 131 : 63 - 86
  • [27] Derived Categories of Moduli Spaces of Vector Bundles on Curves II
    Narasimhan, M. S.
    GEOMETRY, ALGEBRA, NUMBER THEORY, AND THEIR INFORMATION TECHNOLOGY APPLICATIONS, 2018, 251 : 375 - 382
  • [28] Deligne Products of Line Bundles over Moduli Spaces of Curves
    L. Weng
    D. Zagier
    Communications in Mathematical Physics, 2008, 281 : 793 - 803
  • [29] On the moduli spaces of fiber bundles of curves of genus $\geqq 2$
    H. Önsiper
    Archiv der Mathematik, 2000, 75 : 346 - 348
  • [30] Deligne products of line bundles over moduli spaces of curves
    Weng, L.
    Zagier, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (03) : 793 - 803