Motives of moduli spaces of bundles on curves via variation of stability and flips

被引:2
|
作者
Fu, Lie [1 ,2 ]
Hoskins, Victoria [3 ,5 ]
Lehalleur, Simon Pepin [4 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee IRMA, Strasbourg, France
[2] Univ Strasbourg, Inst Etud Avancees Univ Strasbourg USIAS, Strasbourg, France
[3] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys IMAPP, Nijmegen, Netherlands
[4] Univ Amsterdam, Korteweg de Vries Inst Math KdVI, Amsterdam, Netherlands
[5] Radboud Univ Nijmegen, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
关键词
VECTOR-BUNDLES; HIGGS BUNDLES; CHOW RING; COHOMOLOGY; RANK-2; RATIONALITY; INVARIANCE; VARIETIES; EQUATIONS; 1-CYCLES;
D O I
10.1112/jlms.12739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the rational Chow motives of certain moduli spaces of vector bundles on a smooth projective curve with additional structure (such as a parabolic structure or Higgs field). In the parabolic case, these moduli spaces depend on a choice of stability condition given by weights; our approach is to use explicit descriptions of variation of this stability condition in terms of simple birational transformations (standard flips/flops and Mukai flops) for which we understand the variation of the Chow motives. For moduli spaces of parabolic vector bundles, we describe the change in motive under wall-crossings, and for moduli spaces of parabolic Higgs bundles, we show the motive does not change under wall-crossings. Furthermore, we prove a motivic analogue of a classical theorem of Harder and Narasimhan relating the rational cohomology of moduli spaces of vector bundles with and without fixed determinant. For rank 2 vector bundles of odd degree, we obtain formulae for the rational Chow motives of moduli spaces of semistable vector bundles, moduli spaces of Higgs bundles and moduli spaces of parabolic (Higgs) bundles that are semistable with respect to a generic weight (all with and without fixed determinant).
引用
收藏
页码:1 / 53
页数:53
相关论文
共 50 条
  • [1] Rational curves on moduli spaces of vector bundles
    Sambaiah Kilaru
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1998, 108 : 217 - 226
  • [2] Maximality of moduli spaces of vector bundles on curves
    Brugalle, Erwan
    Schaffhauser, Florent
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2022, 6
  • [3] Rational curves on moduli spaces of vector bundles
    Mustopa, Yusuf
    Teixidor i Bigas, Montserrat
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (03)
  • [4] Rational curves on moduli spaces of vector bundles
    Kilaru, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (03): : 217 - 226
  • [5] Degenerations of the moduli spaces of vector bundles on curves
    Seshadri, CS
    MODULI SPACES IN ALGEBRAIC GEOMETRY, 2000, 1 : 205 - +
  • [6] Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve
    Fu, Lie
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 66 - 89
  • [7] Degenerations of the moduli spaces of vector bundles on curves II (generalized Gieseker moduli spaces)
    D. S. Nagaraj
    C. S. Seshadri
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 1999, 109 : 165 - 201
  • [8] Degenerations of the moduli spaces of vector bundles on curves II (Generalized Gieseker moduli spaces)
    Nagaraj, DS
    Seshadri, CS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (02): : 165 - 201
  • [9] Degenerations of the moduli spaces of vector bundles on curves I
    D. S. Nagaraj
    C. S. Seshadri
    Proceedings - Mathematical Sciences, 1997, 107 : 101 - 137
  • [10] Whittaker patterns in the geometry of moduli spaces of bundles on curves
    Frenkel, E
    Gaitsgory, D
    Vilonen, K
    ANNALS OF MATHEMATICS, 2001, 153 (03) : 699 - 748