Stochastic Wasserstein Hamiltonian Flows

被引:5
|
作者
Cui, Jianbo [1 ]
Liu, Shu [2 ]
Zhou, Haomin [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] UCLA, Dept Math, Los Angeles, CA 90095 USA
[3] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
关键词
Stochastic Hamiltonian flow; Density manifold; Wong-Zakai approximation; SCHRODINGER-EQUATION; OPTIMAL TRANSPORT; APPROXIMATIONS; CONVERGENCE; DYNAMICS; SPACE;
D O I
10.1007/s10884-023-10264-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stochastic Hamiltonian flow in Wasserstein manifold, the probability density space equipped with L-2-Wasserstein metric tensor, via the Wong-Zakai approximation. We begin our investigation by showing that the stochastic Euler-Lagrange equation, regardless it is deduced from either the variational principle or particle dynamics, can be interpreted as the stochastic kinetic Hamiltonian flows in Wasserstein manifold. We further propose a novel variational formulation to derive more general stochastic Wasserstein Hamiltonian flows, and demonstrate that this new formulation is applicable to various systems including the stochastic Schrodinger equation, Schrodinger equation with random dispersion, and Schrodinger bridge problem with common noise.
引用
收藏
页码:3885 / 3921
页数:37
相关论文
共 50 条
  • [1] Wasserstein Hamiltonian flows
    Chow, Shui-Nee
    Li, Wuchen
    Zhou, Haomin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) : 1205 - 1219
  • [2] TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS
    Cui, Jianbo
    Dieci, Luca
    Zhou, Haomin
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1019 - 1075
  • [3] Stochastic Hamiltonian flows with singular coefficients
    Xicheng Zhang
    Science China Mathematics, 2018, 61 : 1353 - 1384
  • [4] Stochastic Hamiltonian flows with singular coefficients
    Zhang, Xicheng
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (08) : 1353 - 1384
  • [5] Stochastic flows and Bismut formulas for stochastic Hamiltonian systems
    Zhang, Xicheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (10) : 1929 - 1949
  • [6] A pde approach to small stochastic perturbations of Hamiltonian flows
    Ishii, Hitoshi
    Souganidis, Panagiotis E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1748 - 1775
  • [7] PARAMETERIZED WASSERSTEIN HAMILTONIAN FLOW
    Wu, Hao
    Liu, Shu
    Ye, Xiaojing
    Zhou, Haomin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2025, 63 (01) : 360 - 395
  • [8] Stochastic Wasserstein Gradient Flows using Streaming Data with an Application in Predictive Maintenance
    Lanzetti, Nicolas
    Balta, Efe C.
    Liao-McPherson, Dominic
    Dorfler, Florian
    IFAC PAPERSONLINE, 2023, 56 (02): : 3954 - 3959
  • [9] Stochastic Wasserstein Barycenters
    Claici, Sebastian
    Chien, Edward
    Solomon, Justin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [10] Extremal flows in Wasserstein space
    Conforti, Giovanni
    Pavon, Michele
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)