Experimental Evidence Supporting the Seasonal Availability of Water Hypothesis in a Mixed C3/C4 Grassland

被引:2
|
作者
Hajek, Olivia L. [1 ]
Sturchio, Matthew A. [1 ]
Knapp, Alan K. [1 ]
机构
[1] Colorado State Univ, Dept Biol, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
基金
美国食品与农业研究所;
关键词
seasonality; grasslands; precipitation; carbon cycling; C-3/C-4; dynamics; NORTH-AMERICAN GRASSLANDS; PLANT FUNCTIONAL TYPES; CLIMATE-CHANGE; C-4; GRASSES; SOIL RESPIRATION; PRECIPITATION PULSES; SEMIARID ECOSYSTEMS; TEMPERATE GRASSLAND; RELATIVE ABUNDANCE; ATMOSPHERIC CO2;
D O I
10.1007/s10021-023-00896-4
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding how cool-season C-3 and warm-season C-4 grasses will respond to climate change is critical for predicting future ecosystem functioning in many grasslands. With warming, C-4 grasses are expected to increase relative to C-3 grasses, but alterations in the seasonal availability of water may also influence C-3/C-4 dynamics because of their distinct seasons of growth. To better understand how shifts in the seasonal availability of water can affect ecosystem function in a northern mixed-grass prairie in southeastern Wyoming, we reduced early season rainfall (April-June) using rainout shelters and added the amount of excluded precipitation later in the growing season (July-September), effectively shifting spring rainfall to summer rainfall. As expected, this shift in precipitation seasonality altered patterns of soil water availability, leading to a 29% increase in soil respiration and sustained canopy greenness throughout the growing season. Despite these responses, there were no significant differences in C-3 aboveground net primary production (ANPP) between the seasonally shifted treatment and the plots that received ambient precipitation, likely due to the high levels of spring soil moisture present before rainout shelters were deployed that sustained C-3 grass growth. However, in plots with high C-4 grass cover, C-4 ANPP increased significantly in response to increased summer rainfall. Overall, we provide the first experimental evidence that shifts in the seasonality of precipitation, with no change in temperature, will differentially impact C-3 versus C-4 species, altering the dynamics of carbon cycling in this geographically extensive semi-arid grassland.
引用
收藏
页码:414 / 427
页数:14
相关论文
共 50 条
  • [41] THE PRODUCTIVITY OF C3 AND C4 PLANTS - A REASSESSMENT
    SNAYDON, RW
    FUNCTIONAL ECOLOGY, 1991, 5 (03) : 321 - 330
  • [42] Photorespiration connects C3 and C4 photosynthesis
    Braeutigam, Andrea
    Gowik, Udo
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (10) : 2953 - 2962
  • [43] The Path from C3 to C4 Photosynthesis
    Gowik, Udo
    Westhoff, Peter
    PLANT PHYSIOLOGY, 2011, 155 (01) : 56 - 63
  • [44] REGULATION OF PHOTORESPIRATION IN C3 AND C4 SPECIES
    CHOLLET, R
    OGREN, WL
    BOTANICAL REVIEW, 1975, 41 (02): : 137 - 179
  • [45] C4 nephritic factor in C3 glomerulopathy
    Zhang, Yuzhou
    Nester, Carla M.
    Smith, Richard J. H.
    MOLECULAR IMMUNOLOGY, 2014, 61 (02) : 227 - 227
  • [46] C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils
    Wynn, Jonathan G.
    Bird, Michael I.
    GLOBAL CHANGE BIOLOGY, 2007, 13 (10) : 2206 - 2217
  • [47] Evolution of C4 phosphoenolpyruvate carboxylase in the genus Alternanthera:: gene families and the enzymatic characteristics of the C4 isozyme and its orthologues in C3 and C3/C4 Alternantheras
    Gowik, U
    Engelmann, S
    Bläsing, OE
    Raghavendra, AS
    Westhoff, P
    PLANTA, 2006, 223 (02) : 359 - 368
  • [48] Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice
    Liu, Zheng
    Sun, Ning
    Yang, Shangjun
    Zhao, Yanhong
    Wang, Xiaoqin
    Hao, Xingyu
    Qiao, Zhijun
    BIOLOGIA, 2013, 68 (04) : 577 - 586
  • [49] Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice
    Zheng Liu
    Ning Sun
    Shangjun Yang
    Yanhong Zhao
    Xiaoqin Wang
    Xingyu Hao
    Zhijun Qiao
    Biologia, 2013, 68 : 577 - 586
  • [50] A scheme for C4 evolution derived from a comparative analysis of the closely related C3, C3–C4 intermediate, C4-like, and C4 species in the genus Flaveria
    Yuri N. Munekage
    Yukimi Y. Taniguchi
    Plant Molecular Biology, 2022, 110 : 445 - 454