Factors determining fine-scale spatial genetic structure within coexisting populations of common beech (Fagus sylvatica L.), pedunculate oak (Quercus robur L.), and sessile oak (Q. petraea (Matt.) Liebl.)

被引:4
|
作者
Sandurska, Elzbieta [1 ]
Ulaszewski, Bartosz [1 ]
Meyza, Katarzyna [1 ]
Sztupecka, Ewa [1 ]
Burczyk, Jaroslaw [1 ]
机构
[1] Kazimierz Wielki Univ, Fac Biol Sci, Dept Genet, Chodkiewicza 30, PL-85064 Bydgoszcz, Poland
关键词
Fagus sylvatica; Microsatellites; Nature reserve; Offspring and adult cohorts; Quercus petraea; Quercus robur; Seed and pollen dispersal; Spatial genetic structure; NEOTROPICAL TREE; POLLEN DISPERSAL; NATURAL STANDS; DIVERSITY; SEED; DIFFERENTIATION; MANAGEMENT; PATTERN; HISTORY; FLOW;
D O I
10.1186/s13595-023-01217-4
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Key message Naturally regenerating populations of common beech, pedunculate, and sessile oaks develop strong spatial genetic structures at adult and seedling stages. Significant genetic relationship occurs between individuals growing up to 60 m apart. This indicates the minimum distance separating trees from which seeds used for reforestation should be harvested to avoid the adverse effects of excessive relatedness among offspring.Context Spatial genetic structure is an inherent characteristic of naturally regenerating plant populations and has practical implications in forests for the management of genetic resources.Aims We investigated the extent of spatial genetic structure in three broad-leaved forest tree species (common beech-Fagus sylvatica L.; pedunculate oak-Quercus robur L.; and sessile oak-Q. petraea (Matt.) Liebl.) coexisting in the same nature reserve, explored its variation among species and different life stages (adults/offspring), and tested its possible determinants.Methods We explored patterns of spatial distribution of individuals, and using microsatellites, we estimated parameters of spatial genetic structure based on kinship relationships, considering possible sources of variation.Results In adults, the strongest spatial genetic structure was found for Q. petraea (Sp = 0.0187), followed by F. sylvatica (Sp = 0.0133), and the weakest in Q. robur (Sp = 0.0080). It was uniform across different age classes in pedunculate oak but decreased with age in sessile oak. No apparent relationship between age and spatial genetic structure was found in beech. Offspring exhibited significant spatial genetic structure (ranging from 0.0122 in beech to 0.0188 in sessile oak). The cohorts of seedlings having both parents present within the study site had stronger spatial genetic structures than cohorts of seedlings with only one local parent.Conclusion Spatial genetic structure is strong in naturally regenerating populations of heavy-seeded forest trees. Pollen immigration from outside of a local forest stand can significantly decrease the extent of spatial genetic structure in offspring generations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Spiral grain in relation to ring width and cambial age in European oak (Quercus petraeca (Matt.) Liebl. and Q. robur L.)
    School of Agricultural and Forest, Sciences, University of Wales, Bangor, United Kingdom
    Holzforschung, 4 (297-302):
  • [32] Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q petraea (Matt.) Liebl.]
    Scotti-Saintagne, C
    Mariette, S
    Porth, I
    Goicoechea, PG
    Barreneche, T
    Bodénès, K
    Burg, K
    Kremer, A
    GENETICS, 2004, 168 (03) : 1615 - 1626
  • [33] Single tree effects of sessile oak (Quercus petraea (Matt.) Liebl.) within pure stands (Pinus sylvestris L.) on topsoil properties
    Schua, K.
    Fischer, H.
    Lehmann, B.
    Wagner, S.
    ALLGEMEINE FORST UND JAGDZEITUNG, 2007, 178 (9-10): : 172 - 179
  • [34] Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe
    Aranda, I
    Gil, L
    Pardos, JA
    PLANT ECOLOGY, 2005, 179 (02) : 155 - 167
  • [35] Structure and diversity of a natural temperate sessile oak (Quercus petraea L.) - European Beech (Fagus sylvatica L.) forest
    Petritan, Any Mary
    Biris, Iovu Adrian
    Merce, Oliver
    Turcu, Daniel Ond
    Petritan, Ion Catalin
    FOREST ECOLOGY AND MANAGEMENT, 2012, 280 : 140 - 149
  • [36] Seasonal changes in apparent hydraulic conductance and their implications for water use of European beech (Fagus sylvatica L.) and sessile oak [Quercus petraea (Matt.) Liebl] in South Europe
    I. Aranda
    L. Gil
    J.A. Pardos
    Plant Ecology, 2005, 179 : 155 - 167
  • [37] Structure of extracted lignins from oak heartwood (Quercus petraea Liebl., Q-Robur L.)
    Vivas, Nicolas
    Nonier, Marie-Francoise
    Pianet, Isabelle
    de Gaulejac, Nathalie Vivas
    Fouquet, Eric
    COMPTES RENDUS CHIMIE, 2006, 9 (09) : 1221 - 1233
  • [38] Leaf litterfall decomposition of pedunculate (Quercus robur L.) and sessile (Q-petraea [Matt.] Liebl.) oaks and their hybrids and its impact on soil microbiota
    Jurksiene, Girmante
    Janusauskaite, Dalia
    Armolaitis, Kestutis
    Baliuckas, Virgilijus
    DENDROBIOLOGY, 2017, 78 : 51 - 62
  • [39] Effects of fertilization on the vascular ground vegetation of European beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Lieb.) stands
    Misson, L
    de Warnaffe, GD
    Jonard, M
    ANNALS OF FOREST SCIENCE, 2001, 58 (08) : 829 - 842
  • [40] Simulating the effects of thinning and species mixing on stands of oak (Quercus petraea (Matt.) Liebl./Quercus robur L.) and pine (Pinus sylvestris L.) across Europe
    Engel, Markus
    Vospernik, Sonja
    Toiego, Maude
    Morin, Xavier
    Tomao, Antonio
    Trotta, Carlo
    Steckel, Mathias
    Barbati, Anna
    Nothdurft, Arne
    Pretzsch, Hans
    del Rio, Miren
    Skrzyszewski, Jerzy
    Ponette, Quentin
    Loef, Magnus
    Jansons, Aris
    Brazaitis, Gediminas
    ECOLOGICAL MODELLING, 2021, 442