Microstructure and Properties of CoCrNi/Nano-TiC/Micro-TiB2 Composite Coatings Prepared via Laser Cladding

被引:0
|
作者
Liu, He [1 ]
Yu, Yuzhen [1 ]
Wang, Xi [1 ]
Gao, Hanpeng [2 ]
Zhao, Jinku [1 ]
Wang, Hao [1 ]
机构
[1] Yancheng Inst Technol, Sch Mech Engn, Yancheng 224051, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
laser cladding; grain refinement; diffusion reinforcement; wear mechanisms; MEDIUM ENTROPY ALLOY; WEAR-RESISTANCE; TRIBOLOGICAL PROPERTIES; COCRNI; BEHAVIOR;
D O I
10.3390/ma16217016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser cladding was used to prepare CoCrNi-xTiC-xTiB2 (x = 0, 5, 15 wt.%) composite coatings on 316L stainless steel. Then, ceramic mass fraction effects on the microstructure and properties were investigated. Results show viable metallurgical bonding between the coating and the substrate, with no apparent pores or cracks. The addition of ceramics transformed the coating phase from a single-phase face-centered cubic (FCC) to a multi-phase FCC+TiC+TiB2. TiC and TiB2 increased the hardness of the CoCrNi-xTiC-xTiB2 coating from 209.71 HV to 494.77 HV by grain refinement and diffusion strengthening. The substrate wear loss was 0.0088 g, whereas the CoCrNi-xTiC-xTiB2 (x = 15%) coating wear loss was only 0.0012 g. Moreover, the overall wear mechanism of the coating was changed: the substrate wear mechanism was used for abrasive wear, adhesive wear and fatigue wear, and the coating with the addition of 15 wt.% nano-TiC and 15 wt.% micro-TiB2 was the wear mechanism for pitting fatigue wear.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Microstructural characteristics of TiB2-TiC-NiAl composite coatings via Plasma Cladding Process
    Cao, Lili
    Xia, Yuzhen
    Cui, Hongzhi
    Li, Qipeng
    Zhu, Bangwen
    Wang, Qibing
    SURFACE ENGINEERING, 2019, 35 (11) : 997 - 1002
  • [32] Microstructure and properties of WC-12Co composite coatings prepared by laser cladding
    Hu, Miao
    Tang, Jian-cheng
    Chen, Xin-gui
    Ye, Nan
    Zhao, Xin-yue
    Xu, Miao-miao
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2020, 30 (04) : 1017 - 1030
  • [33] Microstructure and Properties of the Stellite6/WC Composite Coatings Prepared by Laser Cladding
    Zhang H.
    Liu H.
    Ren C.
    Li Z.
    Hou S.
    Lasers in Manufacturing and Materials Processing, 2023, 10 (04): : 645 - 658
  • [34] Microstructure and properties of Inconel 625+WC composite coatings prepared by laser cladding
    Tian, Zhi-Hua
    Zhao, Yong-Tao
    Jiang, Ya-Jun
    Ren, Hui-Ping
    RARE METALS, 2021, 40 (08) : 2281 - 2291
  • [35] Effect of nano-TiC/TiB2 and final thermo-mechanical treatment on microstructure and properties of 7185 alloy
    Wang, Yin
    Li, Yong
    Wang, Haiyao
    Tang, Hongqun
    Yu, Wei
    Li, Jiadong
    Xu, Guangming
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [36] Microstructure and tribological properties of in-situ synthesized TiB2-TiC/Ni based composite coating by laser cladding
    Sun, RL
    Tang, Y
    Yang, XJ
    14TH CONGRESS OF INTERNATIONAL FEDERATION FOR HEAT TREATMENT AND SURFACE ENGINEERING, VOLS 1 and 2, PROCEEDINGS, 2004, : 1000 - 1003
  • [38] Microstructure and properties of TiC-TiB2 composite phase Ti-based rare earth laser cladding layers
    Zhang T.
    Zhang Q.
    Zhuang H.
    Li B.
    Xu Y.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2021, 42 (07):
  • [39] Microstructure and properties of FeNiTi/Cr3C2 coatings containing nano-TiC powder prepared by high velocity arc spraying
    College of Material Science and Technology, Jiangsu Science and Technology University, Zhenjiang 212000, China
    不详
    不详
    Cailiao Rechuli Xuebao, 2009, 5 (201-204): : 201 - 204
  • [40] Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding
    Lin, Yinghua
    Yao, Jianhua
    Lei, Yongping
    Fu, Hanguang
    Wang, Liang
    OPTICS AND LASERS IN ENGINEERING, 2016, 86 : 216 - 227