The infimum of the dual volume of convex cocompact hyperbolic 3-manifolds

被引:0
|
作者
Mazzoli, Filippo [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
RENORMALIZED VOLUME; BOUNDARY; SPACE; HYPERSURFACES; CURVATURE; MANIFOLDS; GEOMETRY; CORES;
D O I
10.2140/gt.2023.27.2319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the infimum of the dual volume of the convex core of a convex co-compact hyperbolic 3-manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.
引用
收藏
页码:2319 / 2346
页数:30
相关论文
共 50 条
  • [31] A Schlafli-type formula for convex cores of hyperbolic 3-manifolds
    Bonahon, F
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, 50 (01) : 25 - 58
  • [32] MINIMAL SURFACES IN FINITE VOLUME NONCOMPACT HYPERBOLIC 3-MANIFOLDS
    Collin, Pascal
    Hauswirth, Laurent
    Mazet, Laurent
    Rosenberg, Harold
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 4293 - 4309
  • [33] Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds
    Francaviglia, S
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (09) : 425 - 459
  • [34] Braids, orderings, and minimal volume cusped hyperbolic 3-manifolds
    Kin, Eiko
    Rolfsen, Dale
    GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (03) : 961 - 1004
  • [35] Volume and homology of one-cusped hyperbolic 3-manifolds
    Culler, Marc
    Shalen, Peter B.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (01): : 343 - 379
  • [36] Hyperbolic 3-manifolds with geodesic boundary: Enumeration and volume calculation
    Mednykh A.D.
    Petronio C.
    Proceedings of the Steklov Institute of Mathematics, 2006, 252 (1) : 155 - 171
  • [37] Macfarlane hyperbolic 3-manifolds
    Quinn, Joseph A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1603 - 1632
  • [38] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [39] Horocycles in hyperbolic 3-manifolds
    McMullen, Curtis T.
    Mohammadi, Amir
    Oh, Hee
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 961 - 973
  • [40] Horocycles in hyperbolic 3-manifolds
    Curtis T. McMullen
    Amir Mohammadi
    Hee Oh
    Geometric and Functional Analysis, 2016, 26 : 961 - 973