Strain-rate-dependent material properties of human lung parenchymal tissue using inverse finite element approach

被引:2
|
作者
Pydi, Yeswanth S. [1 ]
Nath, Atri [1 ]
Chawla, Anoop [1 ]
Mukherjee, Sudipto [1 ]
Lalwani, Sanjeev [2 ]
Malhotra, Rajesh [3 ]
Datla, Naresh V. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Mech Engn, New Delhi 110016, India
[2] All India Inst Med Sci, Dept Forens Sci & Toxicol, New Delhi, India
[3] All India Inst Med Sci, Dept Orthopaed, New Delhi, India
关键词
Human lung parenchyma; Blunt impact; Strain rate dependency; Bilinear material model; Genetic algorithm; Inverse characterization; PORCINE; MECHANISM; ISOTROPY; TRAUMA;
D O I
10.1007/s10237-023-01751-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Automobile crashes and blunt trauma often lead to life-threatening thoracic injuries, especially to the lung tissues. These injuries can be simulated using finite element-based human body models that need dynamic material properties of lung tissue. The strain-rate-dependent material parameters of human parenchymal tissues were determined in this study using uniaxial quasi-static (1 mm/s) and dynamic (1.6, 3, and 5 m/s) compression tests. A bilinear material model was used to capture the nonlinear behavior of the lung tissue, which was implemented using a user-defined material in LS-DYNA. Inverse mapping using genetic algorithm-based optimization of all experimental data with the corresponding FE models yielded a set of strain-rate-dependent material parameters. The bilinear material parameters are obtained for the strain rates of 0.1, 100, 300, and 500 s(-1). The estimated elastic modulus increased from 43 to 153 kPa, while the toe strain reduced from 0.39 to 0.29 when the strain rate was increased from 0.1 to 500 s(-1). The optimized bilinear material properties of parenchymal tissue exhibit a piecewise linear relationship with the strain rate.
引用
收藏
页码:2083 / 2096
页数:14
相关论文
共 50 条
  • [31] Mapping spatially distributed material properties in finite element models of plant tissue using computed tomography
    Stubbs, Christopher J.
    Larson, Ryan
    Cook, Douglas D.
    BIOSYSTEMS ENGINEERING, 2020, 200 : 391 - 399
  • [32] In vivo characterization of mechanical tissue properties of internal organs using endoscopic microscopy and inverse finite element analysis
    Schwenninger, David
    Schumann, Stefan
    Guttmann, Josef
    JOURNAL OF BIOMECHANICS, 2011, 44 (03) : 487 - 493
  • [33] Predicting Mechanical Properties of Polymer Materials Using Rate-Dependent Material Models: Finite Element Analysis of Bespoke Upper Limb Orthoses
    Mian, Syed Hammad
    Umer, Usama
    Moiduddin, Khaja
    Alkhalefah, Hisham
    POLYMERS, 2024, 16 (09)
  • [34] Modeling the effects of blast on the human thorax using high strain rate viscoelastic properties of human tissue
    Ward, EE
    Kleinberger, M
    Lennon, AM
    Roberts, JC
    IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications, 2005, 124 : 17 - 24
  • [35] Non-linear strain rate dependent micro-mechanical composite material model for finite element impact and crashworthiness simulation
    Tabiei, A
    Yia, WT
    Goldberg, R
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (07) : 957 - 970
  • [36] Multicomponent material property characterization of atherosclerotic human carotid arteries through a Bayesian Optimization based inverse finite element approach*
    Torun, Su Guvenir
    Torun, Hakki M.
    Hansen, Hendrik H. G.
    de Korte, Chris L.
    van der Steen, Antonius F. W.
    Gijsen, Frank J. H.
    Akyildiz, Ali C.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2022, 126
  • [37] Investigation of strain rate dependent microscopic failure mechanisms in short fiber reinforced plastics using finite element simulations
    Schweiger, Timo
    Lienhard, Jorg
    Grimm-Strele, Hannes
    Hiermaier, Stefan
    JOURNAL OF COMPOSITE MATERIALS, 2023, 57 (15) : 2483 - 2497
  • [38] Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis
    Abbasi, Mostafa
    Barakat, Mohammed S.
    Vahidkhah, Koohyar
    Azadani, Ali N.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2016, 62 : 33 - 44
  • [39] Identification of Material Properties of Human Brain under Large Shear Deformation: Analytical versus Finite Element Approach
    Untaroiu, C. D.
    Zhang, Q.
    Damon, A. M.
    Crandall, J. R.
    Darvish, K.
    Paskoff, G.
    Shender, B. S.
    26TH SOUTHERN BIOMEDICAL ENGINEERING CONFERENCE: SBEC 2010, 2010, 32 : 448 - +
  • [40] Swelling of a hemi-ellipsoidal ionic hydrogel for determination of material properties of deposited thin polymer films: an inverse finite element approach
    Prot, Victorien
    Sveinsson, Hrafn Mar
    Gawel, Kamila
    Gao, Ming
    Skallerud, Bjorn
    Stokke, Bjorn Torger
    SOFT MATTER, 2013, 9 (24) : 5815 - 5827