Strain-rate-dependent material properties of human lung parenchymal tissue using inverse finite element approach

被引:2
|
作者
Pydi, Yeswanth S. [1 ]
Nath, Atri [1 ]
Chawla, Anoop [1 ]
Mukherjee, Sudipto [1 ]
Lalwani, Sanjeev [2 ]
Malhotra, Rajesh [3 ]
Datla, Naresh V. [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Mech Engn, New Delhi 110016, India
[2] All India Inst Med Sci, Dept Forens Sci & Toxicol, New Delhi, India
[3] All India Inst Med Sci, Dept Orthopaed, New Delhi, India
关键词
Human lung parenchyma; Blunt impact; Strain rate dependency; Bilinear material model; Genetic algorithm; Inverse characterization; PORCINE; MECHANISM; ISOTROPY; TRAUMA;
D O I
10.1007/s10237-023-01751-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Automobile crashes and blunt trauma often lead to life-threatening thoracic injuries, especially to the lung tissues. These injuries can be simulated using finite element-based human body models that need dynamic material properties of lung tissue. The strain-rate-dependent material parameters of human parenchymal tissues were determined in this study using uniaxial quasi-static (1 mm/s) and dynamic (1.6, 3, and 5 m/s) compression tests. A bilinear material model was used to capture the nonlinear behavior of the lung tissue, which was implemented using a user-defined material in LS-DYNA. Inverse mapping using genetic algorithm-based optimization of all experimental data with the corresponding FE models yielded a set of strain-rate-dependent material parameters. The bilinear material parameters are obtained for the strain rates of 0.1, 100, 300, and 500 s(-1). The estimated elastic modulus increased from 43 to 153 kPa, while the toe strain reduced from 0.39 to 0.29 when the strain rate was increased from 0.1 to 500 s(-1). The optimized bilinear material properties of parenchymal tissue exhibit a piecewise linear relationship with the strain rate.
引用
收藏
页码:2083 / 2096
页数:14
相关论文
共 50 条
  • [1] Strain-rate-dependent material properties of human lung parenchymal tissue using inverse finite element approach
    Yeswanth S. Pydi
    Atri Nath
    Anoop Chawla
    Sudipto Mukherjee
    Sanjeev Lalwani
    Rajesh Malhotra
    Naresh V. Datla
    Biomechanics and Modeling in Mechanobiology, 2023, 22 : 2083 - 2096
  • [2] Determination of Strain-Rate-Dependent Mechanical Behavior of Living and Fixed Osteocytes and Chondrocytes Using Atomic Force Microscopy and Inverse Finite Element Analysis
    Trung Dung Nguyen
    Gu, YuanTong
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (10):
  • [3] Measurement of Lung Hyperelastic Properties Using Inverse Finite Element Approach
    Naini, Ali Sadeghi
    Patel, Rajni V.
    Samani, Abbas
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (10) : 2852 - 2859
  • [4] Numerical prediction of composite damage behavior: A modeling approach including the strain-rate-dependent material response
    Pohl, C.
    Toenjes, M.
    Liebold, C.
    Ploeckl, M.
    Koerber, H.
    Avila Gray, L.
    Colin, D.
    Drechsler, K.
    Composite Structures, 2022, 292
  • [5] Region-Dependent Mechanical Properties of Human Brain Tissue Under Large Deformations Using Inverse Finite Element Modeling
    Basilio, Andrew V.
    Zeng, Delin
    Pichay, Leanne A.
    Maas, Steve A.
    Sundaresh, Sowmya N.
    Finan, John D.
    Elkin, Benjamin S.
    Mckhann, Guy M.
    Ateshian, Gerard A.
    Morrison III, Barclay
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (03) : 600 - 610
  • [6] Region-Dependent Mechanical Properties of Human Brain Tissue Under Large Deformations Using Inverse Finite Element Modeling
    Andrew V. Basilio
    Delin Zeng
    Leanne A. Pichay
    Steve A. Maas
    Sowmya N. Sundaresh
    John D. Finan
    Benjamin S. Elkin
    Guy M. McKhann
    Gerard A. Ateshian
    Barclay Morrison
    Annals of Biomedical Engineering, 2024, 52 : 600 - 610
  • [7] Quantification of stress-state and strain-rate-dependent damage evolution in ceramics through a rate-dependent finite-discrete element model
    Yang, Alex
    Rezasefat, Mohammad
    Hogan, James D.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (05)
  • [8] Computational finite element modeling of stress-state- and strain-rate-dependent failure behavior of ceramics with experimental validation
    Zaiemyekeh, Zahra
    Li, Haoyang
    Sayahlatifi, Saman
    Ji, Min
    Zheng, Jie
    Romanyk, Dan L.
    Hogan, James D.
    CERAMICS INTERNATIONAL, 2023, 49 (09) : 13878 - 13895
  • [9] Material properties in regenerating axolotl limbs using inverse finite element analysis
    Kondiboyina, Vineel
    Duerr, Timothy J.
    Monaghan, James R.
    Shefelbine, Sandra J.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2024, 150
  • [10] Strain-rate-dependent properties of short carbon fiber-reinforced acrylonitrile-butadiene-styrene using material extrusion additive manufacturing
    Verbeeten, Wilco M. H.
    Lorenzo-Banuelos, Miriam
    Saiz-Ortiz, Ruben
    Gonzalez, Rodrigo
    RAPID PROTOTYPING JOURNAL, 2020, 26 (10) : 1701 - 1712