Optimal large-time estimates and singular limits for thermoelastic plate equations with the Fourier law
被引:9
|
作者:
Chen, Wenhui
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
Chen, Wenhui
[1
,3
]
Ikehata, Ryo
论文数: 0引用数: 0
h-index: 0
机构:
Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Div Educ Sci, Higashihiroshima, JapanGuangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
Ikehata, Ryo
[2
]
机构:
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Div Educ Sci, Higashihiroshima, Japan
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
In this paper, we study asymptotic behaviors for classical thermoelastic plate equations with the Fourier law of heat conduction in the whole space Double-struck capital Rn$$ {\mathrm{\mathbb{R}}}<^>n $$, where we introduce a reduction methodology basing on third-order (in time) differential equations and refined Fourier analysis. We derive optimal growth estimates when n <= 3$$ n\leqslant 3 $$, bounded estimates when n=4$$ n=4 $$, and decay estimates when n > 5$$ n\geqslant 5 $$ for the vertical displacement in the L2$$ {L}<^>2 $$ norm. Particularly, the new critical dimension n=4$$ n=4 $$ for distinguishing the decisive role between the plate model and the Fourier law of heat conduction is discovered. Moreover, concerning the small thermal parameter in the temperature equation, we study the singular limit problem. We not only show global (in time) convergence of the vertical displacements between thermoelastic plates and structurally damped plates but also rigorously demonstrate a new second-order profile of the solution. Our methodology can settle several closely related problems in thermoelasticity.
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Capital Normal Univ, Acad Multidisciplinary Studies, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Li, Hai-Liang
Liang, Chuangchuang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China