IRS-Assisted Physical Layer Security in MIMO-NOMA Networks

被引:16
|
作者
Qi, Yue [1 ]
Vaezi, Mojtaba [1 ]
机构
[1] Villanova Univ, Dept Elect & Comp Engn, Villanova, PA 19085 USA
关键词
Optimization; NOMA; Covariance matrices; Security; Particle swarm optimization; Encoding; Complexity theory; IRS; MIMO-NOMA; physical layer security; sum-rate; particle swarm optimization; INTELLIGENT REFLECTING SURFACE; OPTIMIZATION;
D O I
10.1109/LCOMM.2023.3235722
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we propose deploying the intelligent reflecting surface (IRS) to enhance the physical layer security in non-orthogonal multiple access (NOMA). The secrecy sum-rate of IRS-assisted multiple-input multiple-output (MIMO) NOMA is maximized in the presence of an eavesdropper. Because of the discrete unit-modulus constraint and the nonconvex property, the secrecy sum-rate maximization problem is hard to solve. We reformulate the original problem into an equivalent parameterized optimization using rotation matrices and apply the particle swarm algorithm for global optimization. Simulation results verify that the performance of the proposed algorithm is close to the secrecy capacity of the channel, realized by exhaustive search, and outperforms other methods like alternating optimization and zero-forcing in terms of complexity and achievable rates.
引用
收藏
页码:792 / 796
页数:5
相关论文
共 50 条
  • [41] Statistical Delay Guarantee for the URLLC in IRS-Assisted NOMA Networks With Finite Blocklength Coding
    Nguyen, Thi My Tuyen
    Nguyen, The Vi
    Noh, Wonjong
    Cho, Sungrae
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19852 - 19869
  • [42] Joint beamforming and phase shift design in downlink UAV networks with IRS-assisted NOMA
    Jiao, Shi Yu
    Fang, Fang
    Zhou, Xiao Tian
    Zhang, Hai Xia
    Journal of Communications and Information Networks, 2020, 5 (02): : 138 - 149
  • [43] Signaling Design for MIMO-NOMA With Different Security Requirements
    Qi, Yue
    Vaezi, Mojtaba
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 1389 - 1401
  • [44] GSVD-Based MIMO-NOMA Security Transmission
    Rao, Chenguang
    Ding, Zhiguo
    Dai, Xuchu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (07) : 1484 - 1487
  • [45] Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA
    Shehab, Muhammad
    Ciftler, Bekir S.
    Khattab, Tamer
    Abdallah, Mohamed M.
    Trinchero, Daniele
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 729 - 739
  • [46] Power Efficiency Physical Layer Security for Multiple Users in IRS-assisted Uplink Channels: Learning to Phase Shift
    Cheng, Xiangrui
    Liu, Yiliang
    Su, Zhou
    Luo, Xuewen
    Xu, Qichao
    Peng, Haixia
    Benslimane, Abderrahim
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5037 - 5042
  • [47] Deep reinforcement learning based IRS-assisted mobile edge computing under physical-layer security
    Zhang, Lianhong
    Lai, Shiwei
    Xia, Junjuan
    Gao, Chongzhi
    Fan, Dahua
    Ou, Jianghong
    PHYSICAL COMMUNICATION, 2022, 55
  • [48] Target Localization for IRS-Assisted Massive MIMO Systems
    Mu, Xinru
    Zhou, Lei
    Fu, Haijun
    Dai, Jisheng
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 29260 - 29270
  • [49] Dual-Polarized IRS-Assisted MIMO Network
    Munawar, Muteen
    Lee, Kyungchun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 2519 - 2532
  • [50] Joint multiple resource allocation for offloading cost minimization in IRS-assisted MEC networks with NOMA
    Guang Chen
    Yueyun Chen
    Zhiyuan Mai
    Conghui Hao
    Meijie Yang
    Shuangshuang Han
    Liping Du
    Digital Communications and Networks, 2023, 9 (03) : 613 - 627