Global well-posedness for the three-dimensional Navier-Stokes-Maxwell system with damping

被引:3
|
作者
Liu, Hui [1 ]
Sun, Chengfeng [2 ]
Xin, Jie [3 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
[3] Shandong Agr Univ, Coll Informat Sci & Engn, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Maxwell system; Damping term; Well-posedness; Strong solutions; EQUATIONS;
D O I
10.1016/j.aml.2023.108622
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The three-dimensional Navier-Stokes-Maxwell system with damping is consid-ered in this paper. Existence and uniqueness of strong solutions for the three-dimensional Navier-Stokes-Maxwell system with damping are proved for beta >= 3.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Global well-posedness of perturbed Navier-Stokes system around Landau solutions
    Zhang, Jingjing
    Zhang, Ting
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [42] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [43] On the global well-posedness of a class of Boussinesq-Navier-Stokes systems
    Miao, Changxing
    Xue, Liutang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (06): : 707 - 735
  • [44] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [45] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [46] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111
  • [47] GLOBAL WELL-POSEDNESS FOR THE TWO-DIMENSIONAL INCOMPRESSIBLE CHEMOTAXIS-NAVIER-STOKES EQUATIONS
    Zhang, Qian
    Zheng, Xiaoxin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 3078 - 3105
  • [48] Well-posedness for the Navier-Stokes equations
    Koch, H
    Tataru, D
    ADVANCES IN MATHEMATICS, 2001, 157 (01) : 22 - 35
  • [49] Global well-posedness to a chemotaxis-Stokes system
    Yang, Ying
    Jin, Chunhua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62
  • [50] GLOBAL WELL-POSEDNESS OF INCOMPRESSIBLE ELASTODYNAMICS IN THREE-DIMENSIONAL THIN DOMAIN
    Cai, Yuan
    Wang, Fan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) : 6654 - 6696