Total Domination on Tree Operators

被引:3
|
作者
Bermudo, Sergio [1 ]
机构
[1] Univ Pablo de Olavide, Dept Econ Quantitat Methods & Econ Hist, Carretera Utrera Km 1, Seville 41013, Spain
关键词
Total domination; graph operation; POLYNOMIALS;
D O I
10.1007/s00009-022-02236-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V and edge set E, a set D subset of V is a total dominating set if every vertex v is an element of V has at least one neighbor in D. The minimum cardinality among all total dominating sets is called the total domination number, and it is denoted by gamma t(G).Given an arbitrary tree graph T, we consider some operators acting on this graph; S(T),R(T),Q(T) and T(T), and we give bounds of the total domination number of these new graphs using other parameters in the graph T. We also give the exact value of the total domination number in some of them.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Domination by Positive Narrow Operators
    Julio Flores
    César Ruiz
    Positivity, 2003, 7 : 303 - 321
  • [42] Domination by positive narrow operators
    Flores, J
    Ruiz, C
    POSITIVITY, 2003, 7 (04) : 303 - 321
  • [43] Schur operators and domination problem
    Baklouti, Hamadi
    Hajji, Mohamed
    POSITIVITY, 2017, 21 (01) : 35 - 48
  • [44] Domination of unbounded operators and commutativity
    Stochel, J
    Szafraniec, FH
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) : 405 - 437
  • [45] Schur operators and domination problem
    Hamadi Baklouti
    Mohamed Hajji
    Positivity, 2017, 21 : 35 - 48
  • [46] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [47] Total Domination Versus Domination in Cubic Graphs
    Joanna Cyman
    Magda Dettlaff
    Michael A. Henning
    Magdalena Lemańska
    Joanna Raczek
    Graphs and Combinatorics, 2018, 34 : 261 - 276
  • [48] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [49] BOUNDING THE LOCATING-TOTAL DOMINATION NUMBER OF A TREE IN TERMS OF ITS ANNIHILATION NUMBER
    Ning, Wenjie
    Lu, Mei
    Wang, Kun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 31 - 40
  • [50] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276