Let G be a graph with vertex set V and edge set E, a set D subset of V is a total dominating set if every vertex v is an element of V has at least one neighbor in D. The minimum cardinality among all total dominating sets is called the total domination number, and it is denoted by gamma t(G).Given an arbitrary tree graph T, we consider some operators acting on this graph; S(T),R(T),Q(T) and T(T), and we give bounds of the total domination number of these new graphs using other parameters in the graph T. We also give the exact value of the total domination number in some of them.
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, MexicoUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, Mexico
Villamar, I. Rios
Cabrera-Martinez, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cordoba, Dept Matemat, Campus Rabanales, Cordoba 14071, SpainUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, Mexico
Cabrera-Martinez, A.
Sanchez, J. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, MexicoUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, Mexico
Sanchez, J. L.
Sigarreta, J. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, MexicoUniv Autonoma Guerrero, Fac Matemat, Carlos E Adame 54, La Garita 39650, Acapulco, Mexico